LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Predicts Pancreatic Cancer Patients’ Response to CD40 Immunotherapy

By LabMedica International staff writers
Posted on 17 Feb 2021
Image: The Z2 Coulter Counter Analyzer can be used to analyze virtually any cell type and species variation (Photo courtesy of Beckman Coulter).
Image: The Z2 Coulter Counter Analyzer can be used to analyze virtually any cell type and species variation (Photo courtesy of Beckman Coulter).
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and currently the third leading cause of cancer deaths in the USA. Despite the fact that it only accounts for about 3% of new cancer cases, it is responsible for more than 7% of all cancer deaths, and only10% of patients survive five years with the disease.

The purpose of CD40 agonists is to help hasten and facilitate the immune system both by activating antigen-presenting cells, such as dendritic cells, to "prime" T cells and by enhancing anti-tumor macrophage activity. However, CD40 agonist-combination approaches only shrink tumors in a little more than half of patients, past studies have shown.

Hematology and Oncology specialists from the Abramson Cancer Center of the University of Pennsylvania (Philadelphia, PA, USA) analyzed blood samples from 22 patients with PDAC to gain insight into the immunological mechanisms underway after treatment with chemoimmunotherapy. Clinical data including demographics and characteristics and clinical laboratory tests were abstracted from the electronic medical record. Blood analyses were based on clinical chemistry and hematology laboratory analysis. Patients were defined as being non-inflamed (NLRlow) or systemically inflamed (NLRhigh) based on pre-treatment neutrophil-lymphocyte ratio (NLR) with a cutoff of greater or less than 3:1.

Plasma was collected and stored at -80 ⁰C until analysis. Cytokine levels (IL-2, IL4, IL-5, IL-1b, IL-6, IL-8, IL-10, IL-12, IFNγ, TNF) and Serum Amyloid A (SAA) levels were determined using human enzyme-linked immunosorbent assay kits. C-reactive protein (CRP) levels were determined by Cobas c311 assay (Roche Diagnostics, Indianapolis, IN, USA). Cryopreserved peripheral blood mononuclear cells (PBMCs) were thawed and counted using a Z2 Coulter Counter Analyzer (Beckman Coulter, Brea, CA, USA). CD14+ cells were isolated using positive selection with human CD14 microbeads. Mass cytometry antibody panel, staining and data acquisition was performed using a Helios mass cytometer (Fluidigm, South San Francisco, CA, USA).

The team observed a depletion of B cells, monocytes, and dendritic cells as well as activation of CD4+ T cells over eight days in most patients. Surprisingly, a closer look revealed no consistent evidence of CD8+ cell activation and no association between T cell activation and outcomes. These findings challenge preclinical studies that have suggested that T cell activation sparked by CD40 agonists would associate with outcomes.

Rather, overall survival outcomes were associated with a measurable characteristic in the patients' blood found before treatment: systemic inflammation. Systemic inflammation is marked by the increased presence of neutrophils, inflammatory cytokines (including IL-6 and IL-8) and acute phase reactants in the peripheral blood, and is a known symptom of pancreatic cancer and other cancer types. Patients with systemic inflammation before treatment with a CD40 agonist and gemcitabine, had a median overall survival of 5.8 months versus 12.3 months for patients without inflammation from the start of treatment.

Gregory L. Beatty, MD, PhD, an associate professor of Hematology-Oncology and senior author of the study said, “These latest findings support the fact that inflammation seems to place the immune system at a disadvantage and in doing so prevents the ability of immune therapies to work.” The study was published on January 26, 2021 in the journal JCI Insight.


Related Links:
Abramson Cancer Center of the University of Pennsylvania
Roche Diagnostics
Beckman Coulter
Fluidigm



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Automated MALDI-TOF MS System
EXS 3000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more