Automated Leucocyte VCS Parameters Evaluated for Pathogenic Infections
By LabMedica International staff writers Posted on 16 Feb 2021 |

Image: The DxH 800 hematology analyzer, can utilize accurate data about individual cell size, shape and structure to provide high-quality first-pass results with VCS technology (Photo courtesy of Beckman Coulter Inc).
Malaria and dengue are highly endemic in most parts of India. Mangalore, a city in coastal Karnataka, India, has high prevalence of both these vector‐borne infections with extensive range of clinical presentations. The outbreak of these infections is common during and after the rainy season.
Clinical symptoms of these infections intersect each other and those seen in leptospirosis, typhoid fever and rickettsial infections. The latter three, though not as common as malaria and dengue fever, pose diagnostic difficulties in their early phases. The clinical presentation can vary from a mild febrile illness to lethal complications such as disseminated intravascular coagulation.
Medical Laboratory Scientists at the Kasturba Medical College (Manipal, India) compared automated parameters by VCS technology that can predict and aid in rapid and reliable prediction of specific infections such as malaria, dengue, leptospirosis, typhoid and rickettsial infections. This technology quantifies volume of the cells by voltage impedance (V); nuclear‐cytoplasmic ratio by radiofrequency conductivity (C); and internal cellular features such as cytoplasmic granularity and nuclear complexity by laser light scatter (S) and hence known as VCS technology. A total of 324 patients fulfilled the inclusion criteria of infection group and equal number of controls were included in the study.
The scientists used the Coulter DXH800 hematology analyzer (Beckman Coulter Inc., Miami, FL, USA). Serologically positive cases of dengue, leptospirosis, typhoid and rickettsia; and malaria cases diagnosed by florescence microscopy‐ quantitative buffy coat (QBC) method and were confirmed by peripheral smear examination. The dengue cases were taken as positive based on positivity using either dengue NS1 test (immunochromatography card) or dengue IgM Panbio ELISA, and the leptospirosis cases were considered positive based on IgM Panbio ELISA test (Panbio Inc. Brisbane, Australia).
The team reported that a total of 324 cases comprising of malaria (50%), dengue (30.9%), leptospirosis (13.9%), typhoid (4.0%) and rickettsial infections (1.2%) were included. There was statistically significant differences in the mean values of complete blood count parameters—hemoglobin, total leucocyte count, red blood cell count, hematocrits, red cell distribution width, differential leucocyte count, platelet count and plateletcrit between cases and controls and also between specific infections. The mean volumes of neutrophil, monocyte and lymphocyte were considerably increased in malaria and dengue fever compared to leptospirosis, typhoid and rickettsial infections. VCS parameters were the least altered in typhoid fever, except for a strikingly high conductivity and scatter of eosinophils.
The authors concluded that there was significant difference in the volume, conductivity and scatter of neutrophils, monocytes and lymphocytes between the five groups and the values are found to be greatest in malaria. Mean neutrophil volume (MNV), mean lymphocyte volume (MLV) and mean monocyte volume (MMV) were increased significantly in malaria and dengue fever compared to leptospirosis, typhoid and rickettsial infections. Dengue cases showed significantly higher values in most of the leucocyte light scatter data. The study was published on February 4, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Kasturba Medical College
Beckman Coulter Inc
Panbio Inc
Clinical symptoms of these infections intersect each other and those seen in leptospirosis, typhoid fever and rickettsial infections. The latter three, though not as common as malaria and dengue fever, pose diagnostic difficulties in their early phases. The clinical presentation can vary from a mild febrile illness to lethal complications such as disseminated intravascular coagulation.
Medical Laboratory Scientists at the Kasturba Medical College (Manipal, India) compared automated parameters by VCS technology that can predict and aid in rapid and reliable prediction of specific infections such as malaria, dengue, leptospirosis, typhoid and rickettsial infections. This technology quantifies volume of the cells by voltage impedance (V); nuclear‐cytoplasmic ratio by radiofrequency conductivity (C); and internal cellular features such as cytoplasmic granularity and nuclear complexity by laser light scatter (S) and hence known as VCS technology. A total of 324 patients fulfilled the inclusion criteria of infection group and equal number of controls were included in the study.
The scientists used the Coulter DXH800 hematology analyzer (Beckman Coulter Inc., Miami, FL, USA). Serologically positive cases of dengue, leptospirosis, typhoid and rickettsia; and malaria cases diagnosed by florescence microscopy‐ quantitative buffy coat (QBC) method and were confirmed by peripheral smear examination. The dengue cases were taken as positive based on positivity using either dengue NS1 test (immunochromatography card) or dengue IgM Panbio ELISA, and the leptospirosis cases were considered positive based on IgM Panbio ELISA test (Panbio Inc. Brisbane, Australia).
The team reported that a total of 324 cases comprising of malaria (50%), dengue (30.9%), leptospirosis (13.9%), typhoid (4.0%) and rickettsial infections (1.2%) were included. There was statistically significant differences in the mean values of complete blood count parameters—hemoglobin, total leucocyte count, red blood cell count, hematocrits, red cell distribution width, differential leucocyte count, platelet count and plateletcrit between cases and controls and also between specific infections. The mean volumes of neutrophil, monocyte and lymphocyte were considerably increased in malaria and dengue fever compared to leptospirosis, typhoid and rickettsial infections. VCS parameters were the least altered in typhoid fever, except for a strikingly high conductivity and scatter of eosinophils.
The authors concluded that there was significant difference in the volume, conductivity and scatter of neutrophils, monocytes and lymphocytes between the five groups and the values are found to be greatest in malaria. Mean neutrophil volume (MNV), mean lymphocyte volume (MLV) and mean monocyte volume (MMV) were increased significantly in malaria and dengue fever compared to leptospirosis, typhoid and rickettsial infections. Dengue cases showed significantly higher values in most of the leucocyte light scatter data. The study was published on February 4, 2021 in the Journal of Clinical Laboratory Analysis.
Related Links:
Kasturba Medical College
Beckman Coulter Inc
Panbio Inc
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
A tumor marker is a substance found in the body that may signal the presence of cancer. These substances, which can include proteins, genes, molecules, or other biological compounds, are either produced... Read more
Urine Test Diagnoses Early-Stage Prostate Cancer
Prostate cancer is one of the leading causes of death among men worldwide. A major challenge in diagnosing the disease is the absence of reliable biomarkers that can detect early-stage tumors.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more