Rapid One-Step Assay for Field-Based Detection of Asymptomatic Malaria
|
By LabMedica International staff writers Posted on 29 Sep 2020 |

Image: A field-applicable, ultrasensitive diagnostic assay specifically detects DNA and RNA sequences from all Plasmodium species in symptomatic and asymptomatic malaria, and delivers its results fast in simple reporter devices (Photo courtesy of Peter Nguyen, Harvard University)
A novel CRISPR-based ultrasensitive assay system was able to detect the four major types of malaria-causing parasites and has been streamlined for use in locations lacking the advanced laboratory equipment and highly trained technicians required for tests such as RT-qPCR, which is used extensively for monitoring the COVID-19 pandemic.
Asymptomatic carriers of malaria caused by parasites of the Plasmodium species (P. falciparum, P. vivax, P. ovale, and P. malariae) hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (fewer than 100 parasites per microliter blood) that can be used in resource-limited settings (RLS). Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS.
Investigators at Harvard University (Cambridge, MA, USA) and their collaborators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and the Wyss Institute for Biologically Inspired Engineering (Cambridge, MA) reported the development of a CRISPR-based diagnostic tool for ultrasensitive detection and differentiation of the four Plasmodium parasites, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking).
The investigators modified the SHERLOCK protocol to incorporate the CRISPR-Cas12a enzyme, which they programmed to become activated by a guide RNA that bound to a specific target nucleic acid target sequence, in this case a sequence from one of the four Plasmodium species. Activated Cas12a then non-specifically cleaved any single-stranded DNA strand in its vicinity with an extremely high turn-over rate of about 1,250 collateral cleavage reactions per second.
The complete assay platform was expanded to comprise a 10-minute SHERLOCK parasite rapid extraction protocol, followed by the SHERLOCK diagnostic protocol for 60 minutes, which enabled Plasmodium species-specific detection via fluorescent or lateral flow strip readout. The assay was compatible with different sample types, such as whole blood, plasma, serum, and dried blood; and all components required for amplification, Cas12a activation, and signal generation were lyophilized in a single test tube that functioned as a "one-pot-reaction" following reconstitution of the reagents when mixed with a patient sample.
Performance of the simplified field-ready SHERLOCK diagnostic was evaluated using simulated whole blood, serum, and dried blood spot (DBS) samples, as well as clinical samples from patients with P. falciparum and P. vivax infections. Results revealed that the assay was capable of detecting fewer than two parasites per microliter blood, a limit of detection suggested by the World Health Organization (WHO). The P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (five P. falciparum and 10 P. vivax samples).
"This field-ready SHERLOCK diagnostic malaria assay surpasses the sensitivity and specificity requirements set by the WHO for a desired test that can be used to detect low parasite density in asymptomatic carriers of all major Plasmodium species," said senior author Dr. James Collins, professor of medical engineering and science at the Massachusetts Institute of Technology. "Its highly streamlined design could provide a viable solution to the present diagnostic bottleneck on the path to eliminate malaria, and more generally enabling malaria surveillance in low-resource settings."
The rapid SHERLOCK assay for malaria parasites was described in the September 21, 2020, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Harvard University
Massachusetts Institute of Technology
Wyss Institute for Biologically Inspired Engineering
Asymptomatic carriers of malaria caused by parasites of the Plasmodium species (P. falciparum, P. vivax, P. ovale, and P. malariae) hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (fewer than 100 parasites per microliter blood) that can be used in resource-limited settings (RLS). Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS.
Investigators at Harvard University (Cambridge, MA, USA) and their collaborators at the Massachusetts Institute of Technology (Cambridge, MA, USA) and the Wyss Institute for Biologically Inspired Engineering (Cambridge, MA) reported the development of a CRISPR-based diagnostic tool for ultrasensitive detection and differentiation of the four Plasmodium parasites, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking).
The investigators modified the SHERLOCK protocol to incorporate the CRISPR-Cas12a enzyme, which they programmed to become activated by a guide RNA that bound to a specific target nucleic acid target sequence, in this case a sequence from one of the four Plasmodium species. Activated Cas12a then non-specifically cleaved any single-stranded DNA strand in its vicinity with an extremely high turn-over rate of about 1,250 collateral cleavage reactions per second.
The complete assay platform was expanded to comprise a 10-minute SHERLOCK parasite rapid extraction protocol, followed by the SHERLOCK diagnostic protocol for 60 minutes, which enabled Plasmodium species-specific detection via fluorescent or lateral flow strip readout. The assay was compatible with different sample types, such as whole blood, plasma, serum, and dried blood; and all components required for amplification, Cas12a activation, and signal generation were lyophilized in a single test tube that functioned as a "one-pot-reaction" following reconstitution of the reagents when mixed with a patient sample.
Performance of the simplified field-ready SHERLOCK diagnostic was evaluated using simulated whole blood, serum, and dried blood spot (DBS) samples, as well as clinical samples from patients with P. falciparum and P. vivax infections. Results revealed that the assay was capable of detecting fewer than two parasites per microliter blood, a limit of detection suggested by the World Health Organization (WHO). The P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (five P. falciparum and 10 P. vivax samples).
"This field-ready SHERLOCK diagnostic malaria assay surpasses the sensitivity and specificity requirements set by the WHO for a desired test that can be used to detect low parasite density in asymptomatic carriers of all major Plasmodium species," said senior author Dr. James Collins, professor of medical engineering and science at the Massachusetts Institute of Technology. "Its highly streamlined design could provide a viable solution to the present diagnostic bottleneck on the path to eliminate malaria, and more generally enabling malaria surveillance in low-resource settings."
The rapid SHERLOCK assay for malaria parasites was described in the September 21, 2020, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Harvard University
Massachusetts Institute of Technology
Wyss Institute for Biologically Inspired Engineering
Latest Microbiology News
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








