Blood Test Predicts Prostate Cancer Treatment Response
|
By LabMedica International staff writers Posted on 17 Jun 2020 |

Image: The QIAsymphony SP machine enables sample preparation of DNA, RNA, and bacterial and viral nucleic acids from a wide range of starting materials (Photo courtesy of Qiagen).
Prostate cancer became a bigger killer than breast cancer for the first time, official statistics revealed last year. More than 11,800 men a year - or one every 45 minutes - are now killed by the disease in the UK, compared with about 11,400 women dying of breast cancer.
This means prostate cancer is behind only lung and bowel in terms of how many people it kills in Britain. In the US, the disease kills 26,000 each year. Despite this, it receives less than half the research funding of breast cancer, while treatments for the disease are trailing at least a decade behind.
Oncology specialists led by The Institute of Cancer Research (London, UK) collected blood samples in cell-free DNA Streck tubes (Streck Corporate, La Vista, NE, USA) from 216 patients at three time points; baseline, C3D1 and end of treatment. Cell-free DNA (cfDNA) was extracted from plasma using a Circulating DNA Kit (Qiagen, Hilden, Germany) on a Qiagen QIAsymphony machine. The team extracted 25ng of cfDNA that was used in library preparation, constructed with a custom designed, 58 gene, Qiagen QIAseq Targeted DNA panel, enriched for PI3K/AR pathway genes. Samples were sequenced to mean depth of 3394x on a NextSeq500 machine (Illumina, San Diego, CA, USA).
The scientists analyzed the blood samples from men who were part of a clinical trial of the targeted drug abiraterone with or without an experimental drug, ipatasertib. The results showed that men with high levels of tumor DNA at the start of treatment had a significantly worse outcome. Their disease progressed two and a half months earlier than those negative for 'ctDNA' at the start of treatment. The team looked at blood samples over the course of the treatment with repeated tests, and found those who responded to treatment had the greatest fall in the amount of cancer DNA in their bloodstream. Cancer DNA dropped by 23%, while those who partially responded to treatment had a reduction of 16%. Men whose prostate cancer continued to get worse or stayed the same only saw a reduction of 1% to 4% respectively. The team observed emerging resistance mutations in progression samples, including alterations in TP53, AR, FOXA, PTEN, and PI3K/AKT pathway genes.
Johann de Bono, MD, MSc, PhD, FRCP, FMedSci, a professor of Medical Oncology and a senior author of the study, said, “Our study shows that a simple blood test could help us track how cancer evolves and responds to treatment, initially as part of clinical trials and eventually in routine care. These so-called liquid biopsy tests are minimally invasive, cost-effective and can be performed often and with ease. Tracking prostate cancer with a blood test instead of a painful surgical biopsy could significantly improve patients' quality of life.” The study was presented at the American Society of Clinical Oncology Virtual meeting held May 29 - May 31, 2020.
This means prostate cancer is behind only lung and bowel in terms of how many people it kills in Britain. In the US, the disease kills 26,000 each year. Despite this, it receives less than half the research funding of breast cancer, while treatments for the disease are trailing at least a decade behind.
Oncology specialists led by The Institute of Cancer Research (London, UK) collected blood samples in cell-free DNA Streck tubes (Streck Corporate, La Vista, NE, USA) from 216 patients at three time points; baseline, C3D1 and end of treatment. Cell-free DNA (cfDNA) was extracted from plasma using a Circulating DNA Kit (Qiagen, Hilden, Germany) on a Qiagen QIAsymphony machine. The team extracted 25ng of cfDNA that was used in library preparation, constructed with a custom designed, 58 gene, Qiagen QIAseq Targeted DNA panel, enriched for PI3K/AR pathway genes. Samples were sequenced to mean depth of 3394x on a NextSeq500 machine (Illumina, San Diego, CA, USA).
The scientists analyzed the blood samples from men who were part of a clinical trial of the targeted drug abiraterone with or without an experimental drug, ipatasertib. The results showed that men with high levels of tumor DNA at the start of treatment had a significantly worse outcome. Their disease progressed two and a half months earlier than those negative for 'ctDNA' at the start of treatment. The team looked at blood samples over the course of the treatment with repeated tests, and found those who responded to treatment had the greatest fall in the amount of cancer DNA in their bloodstream. Cancer DNA dropped by 23%, while those who partially responded to treatment had a reduction of 16%. Men whose prostate cancer continued to get worse or stayed the same only saw a reduction of 1% to 4% respectively. The team observed emerging resistance mutations in progression samples, including alterations in TP53, AR, FOXA, PTEN, and PI3K/AKT pathway genes.
Johann de Bono, MD, MSc, PhD, FRCP, FMedSci, a professor of Medical Oncology and a senior author of the study, said, “Our study shows that a simple blood test could help us track how cancer evolves and responds to treatment, initially as part of clinical trials and eventually in routine care. These so-called liquid biopsy tests are minimally invasive, cost-effective and can be performed often and with ease. Tracking prostate cancer with a blood test instead of a painful surgical biopsy could significantly improve patients' quality of life.” The study was presented at the American Society of Clinical Oncology Virtual meeting held May 29 - May 31, 2020.
Latest Pathology News
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







 assay.jpg)
