Representative Tumor Sampling Method Lessens Molecular Analyses Bias
By LabMedica International staff writers Posted on 25 May 2020 |

Image: Schematic diagram of how the representative tumor sampling method lessens bias in molecular analyses (Photo courtesy of Francis Crick Institute).
Over the past decade, clinical scientists have demonstrated the inability of an individual biopsy or formalin-fixed paraffin-embedded (FFPE) block to capture the genetic diversity of a solid tumor.
When pathologists extract tumor tissue to identify potential biomarkers for downstream therapy, they deal with issues related to tumor heterogeneity. By analyzing a single sample from a fixed location, they do not always get a representative sample of the cancer, and a tissue biopsy usually only presents less than 0.0005% of the tumor.
Clinical Scientists at the Francis Crick Institute (London, UK) and at Roche Tissue Diagnostics (Tucson, AZ, USA) and their international colleagues have developed a method that they believe could improve clinical tumor molecular profiling by generating accurate tumor mutation burden scores. The team first analyzed data for 1,667 samples across six tumor types from the National Cancer Institute's Cancer Genome Atlas (TCGA). For each sample, they assessed how much of each tumor was sampled.
The system, called Rep-Seq requires at least 1 gram of patient leftover tissue following pathology extraction. The process starts with a pathologist macro-dissecting a sample to remove normal tissue that is at least 5 cm away from the tumor. Tumor and normal tissue are separately incubated and then blended with a specific solution inside a homogenizer. Tumor and immune cells are further separated using fluorescence-activated cell sorting, enriching the representative sample for tumor cells. The group found that tumor sequencing protocols had a high under-sampling bias. Sampling bias was likely also affected by the levels of heterogeneity and purity of tumor cells in the sample.
To determine the effect of spatial bias in single-biopsy sampling, the team pooled extracted DNA from 1,184 multi-region biopsies, taken from 79 primary renal carcinomas (RCCs), to create "cocktail samples." Subjecting the samples to next-generation sequencing (NGS), the team compared mutation calls with previously generated single-biopsy and multi-region biopsy data. They found that the cocktail samples discovered all of the true-set mutations, compared with single biopsies, which only discovered 73%. The team therefore believes that a more representative sample can lead to improved variant detection.
The investigators used tumor masses from leftover material post-surgery, and then applied Rep-Seq on 11 tumors from breast, lung, colorectal, and RCC cancers. Choosing a large clear cell RCC tumor (RS1), the team collected 68 fresh-frozen biopsies from the primary tumor and later homogenized the rest using Rep-Seq. The team performed whole-exome sequencing (WES) on seven biopsies and the Rep-Seq sample, identifying 76 unique mutations. They then compared the Rep-Seq results to the single-biopsy regions and found that the variant allele frequencies (VAFs) from Rep-Seq closely matched the overall tumor VAFs in the 68 biopsies. The group only failed to detect three of the 76 mutations in the Rep-Seq sample.
Samra Turajlic, MBBS, PhD, a Consultant Medical Oncologist and corresponding author of the study, said, “Taking a small sample from a solid cancer, which contains millions or billions of cells, is very problematic, as you deal with the issue of reproducibility. Beyond seeing if there's enough leftover tumor to create a homogenized sample, we wanted to see if the sample will allow you to predict both prognostic and therapeutic markers robustly and accurately.” The study was published on May 5, 2020 in the journal Cell Reports.
When pathologists extract tumor tissue to identify potential biomarkers for downstream therapy, they deal with issues related to tumor heterogeneity. By analyzing a single sample from a fixed location, they do not always get a representative sample of the cancer, and a tissue biopsy usually only presents less than 0.0005% of the tumor.
Clinical Scientists at the Francis Crick Institute (London, UK) and at Roche Tissue Diagnostics (Tucson, AZ, USA) and their international colleagues have developed a method that they believe could improve clinical tumor molecular profiling by generating accurate tumor mutation burden scores. The team first analyzed data for 1,667 samples across six tumor types from the National Cancer Institute's Cancer Genome Atlas (TCGA). For each sample, they assessed how much of each tumor was sampled.
The system, called Rep-Seq requires at least 1 gram of patient leftover tissue following pathology extraction. The process starts with a pathologist macro-dissecting a sample to remove normal tissue that is at least 5 cm away from the tumor. Tumor and normal tissue are separately incubated and then blended with a specific solution inside a homogenizer. Tumor and immune cells are further separated using fluorescence-activated cell sorting, enriching the representative sample for tumor cells. The group found that tumor sequencing protocols had a high under-sampling bias. Sampling bias was likely also affected by the levels of heterogeneity and purity of tumor cells in the sample.
To determine the effect of spatial bias in single-biopsy sampling, the team pooled extracted DNA from 1,184 multi-region biopsies, taken from 79 primary renal carcinomas (RCCs), to create "cocktail samples." Subjecting the samples to next-generation sequencing (NGS), the team compared mutation calls with previously generated single-biopsy and multi-region biopsy data. They found that the cocktail samples discovered all of the true-set mutations, compared with single biopsies, which only discovered 73%. The team therefore believes that a more representative sample can lead to improved variant detection.
The investigators used tumor masses from leftover material post-surgery, and then applied Rep-Seq on 11 tumors from breast, lung, colorectal, and RCC cancers. Choosing a large clear cell RCC tumor (RS1), the team collected 68 fresh-frozen biopsies from the primary tumor and later homogenized the rest using Rep-Seq. The team performed whole-exome sequencing (WES) on seven biopsies and the Rep-Seq sample, identifying 76 unique mutations. They then compared the Rep-Seq results to the single-biopsy regions and found that the variant allele frequencies (VAFs) from Rep-Seq closely matched the overall tumor VAFs in the 68 biopsies. The group only failed to detect three of the 76 mutations in the Rep-Seq sample.
Samra Turajlic, MBBS, PhD, a Consultant Medical Oncologist and corresponding author of the study, said, “Taking a small sample from a solid cancer, which contains millions or billions of cells, is very problematic, as you deal with the issue of reproducibility. Beyond seeing if there's enough leftover tumor to create a homogenized sample, we wanted to see if the sample will allow you to predict both prognostic and therapeutic markers robustly and accurately.” The study was published on May 5, 2020 in the journal Cell Reports.
Latest Pathology News
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more