LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High-Throughput T Cell Profiling Technique Developed

By LabMedica International staff writers
Posted on 13 May 2020
Print article
Image: Linking peptide specificities with T cell transcriptomes (Photo courtesy of University of California, Santa Cruz).
Image: Linking peptide specificities with T cell transcriptomes (Photo courtesy of University of California, Santa Cruz).
T cells recognize foreign or aberrant antigens presented by major histocompatibility complex (MHC-I) expressing cells through the T cell receptor (TCR) and is the first critical step towards establishment of protective immunity against viruses and tumors.

Staining with multivalent MHC class-I reagents (multimers) followed by flow cytometry is routinely used to interrogate T cell responses, to characterize antigen-specific TCR repertoires and to identify immunodominant clones. Fluorescently tagged multimers displaying individual peptides of interest have revolutionized detection of antigen specific T cells.

A team of scientists working with those at the University of California, Santa Cruz (Santa Cruz, CA, USA) have has developed an approach for high-throughput T cell profiling. The key advance is the ability to load peptides of interest on the MHC proteins that the body uses to present foreign antigens to the immune system. These MHC proteins display these antigens on the surface of cells, activating the body's T cell response, through which the immune system kills malfunctioning or infected cells.

The ability to express antigens in high-throughput fashion would be a boon for immunologists as it could, for instance, allow them to more rapidly and comprehensively profile patient responses to antigens linked to cancer or different infectious diseases. In the case of SARS-CoV-2, for example, the scientist could load MHC proteins with peptides comprising the full complement of the virus' proteins and look at which peptides were most important in prompting the T cell response or how T cell repertoires varied depending on the severity of infection or patient outcome.

To address unbound MHC, the team developed an approach using the protein TAPasin Binding Protein Related (TAPBPR), a chaperone protein that binds to MHCs to maintain their stability and also facilitates the exchange of peptides bound to the MHC. The process was streamlined somewhat by use of a workflow that produced MHCs bound to standard placeholder peptides instead of the particular peptide of interest, which allowed the team to produce MHC-antigen peptide complexes in bulk. The placeholder peptides were bound to the MHC via a photosensitive bond that could be disrupted by applying UV light, allowing the investigators to remove the placeholders and replace them with the actual peptides of interest when it was time to perform T cell profiling. The study was published on April 20, 2020 in the journal Nature Communications.

Related Links:
University of California, Santa Cruz

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.