Genetic Alterations Analyzed in Pediatric Low-Grade Glioma
|
By LabMedica International staff writers Posted on 28 Apr 2020 |

Image: The nanoString nCounter: This instrument provides a simple and cost-effective solution of direct digital quantification for multiplex analysis of up to 800 known RNA, DNA, or protein targets in one tube (Photo courtesy of the Crown Institute of Genomics).
Low grade gliomas are brain tumors that come from two different types of brain cells known as astrocytes and oligodendrocytes. They are classified as a grade 2 tumor making them the slowest growing type of glioma in adults.
Pediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. Genetic alterations have been documented in this brain tumor subtype (pLGG) that correspond with better or worse patient outcomes.
A large team of scientists led by those at the Hospital for Sick Children (Toronto, ON, Canada) used imaging, histology, targeted DNA sequencing, RNA sequencing, clinical, and other data for more than 1,000 children with pLGG, they narrowed in on two broad groups of tumors marked either by recurrent rearrangements or by single-nucleotide variants. Broadly speaking, they noted, rearrangement-rich tumors tended to turn up in relatively low-risk pLGG cases, while certain sets of single-nucleotide changes coincided with intermediate- or high-risk pLGG cases.
Starting with data for 976 pLGG patients treated at the hospital between the mid-1980s and 2017, the investigators focused in on 477 cases that could be successfully profiled using methods such as RNA-seq, NanoString nCounter analyses (nanoString Technologies, Seattle, WA,USA), array-based single nucleotide polymorphism (SNP) profiling, targeted DNA sequencing, droplet digital polymerase chain reaction (ddPCR), and immunohistochemistry.
The scientists reported that 84% of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway and roughly two-thirds of the cases contained BRAF or NF1 mutations, or KIAA1549-BRAF fusions. The team also drew prognostic insights from the kinds of mutations that occurred often in the pLGGs. For example, a cluster of 265 tumors appeared to have rearrangement-related drivers. Those tumors were overrepresented in children diagnosed with pLGG before the age of 10, the investigators noted, and some 88% were classified as having grade I histology. In those rearrangement-related cases, the 10-year overall survival rate reached nearly 98%.
Cynthia Hawkins, MD, PhD, a neuropathologist and corresponding author of the study, said, “The pLGG morphological, imaging, clinical, and molecular profiling allowed us to comprehensively investigate the molecular underpinnings and provide comprehensive clinical insights for some of the rarest of pLGG molecular subtypes. These data can guide diagnostic protocols and treatment approaches, while aiding in expediting clinical trials for new, better-targeted therapies for these children in the near future.” The study was published on April 13, 2020 in the journal Cancer Cell.
Pediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. Genetic alterations have been documented in this brain tumor subtype (pLGG) that correspond with better or worse patient outcomes.
A large team of scientists led by those at the Hospital for Sick Children (Toronto, ON, Canada) used imaging, histology, targeted DNA sequencing, RNA sequencing, clinical, and other data for more than 1,000 children with pLGG, they narrowed in on two broad groups of tumors marked either by recurrent rearrangements or by single-nucleotide variants. Broadly speaking, they noted, rearrangement-rich tumors tended to turn up in relatively low-risk pLGG cases, while certain sets of single-nucleotide changes coincided with intermediate- or high-risk pLGG cases.
Starting with data for 976 pLGG patients treated at the hospital between the mid-1980s and 2017, the investigators focused in on 477 cases that could be successfully profiled using methods such as RNA-seq, NanoString nCounter analyses (nanoString Technologies, Seattle, WA,USA), array-based single nucleotide polymorphism (SNP) profiling, targeted DNA sequencing, droplet digital polymerase chain reaction (ddPCR), and immunohistochemistry.
The scientists reported that 84% of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway and roughly two-thirds of the cases contained BRAF or NF1 mutations, or KIAA1549-BRAF fusions. The team also drew prognostic insights from the kinds of mutations that occurred often in the pLGGs. For example, a cluster of 265 tumors appeared to have rearrangement-related drivers. Those tumors were overrepresented in children diagnosed with pLGG before the age of 10, the investigators noted, and some 88% were classified as having grade I histology. In those rearrangement-related cases, the 10-year overall survival rate reached nearly 98%.
Cynthia Hawkins, MD, PhD, a neuropathologist and corresponding author of the study, said, “The pLGG morphological, imaging, clinical, and molecular profiling allowed us to comprehensively investigate the molecular underpinnings and provide comprehensive clinical insights for some of the rarest of pLGG molecular subtypes. These data can guide diagnostic protocols and treatment approaches, while aiding in expediting clinical trials for new, better-targeted therapies for these children in the near future.” The study was published on April 13, 2020 in the journal Cancer Cell.
Latest Pathology News
- Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
- First-Of-Its-Kind Test Identifies Autism Risk at Birth
- AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
- Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
- Fast Label-Free Method Identifies Aggressive Cancer Cells
- New X-Ray Method Promises Advances in Histology
- Single-Cell Profiling Technique Could Guide Early Cancer Detection
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







