Novel Inherited Mutation Predisposes Children to Medulloblastoma
By LabMedica International staff writers Posted on 16 Apr 2020 |

Image: Histopathology of classic medulloblastoma in the brain showing a diffuse pattern of tumor growth with poor cellular differentiation, nuclear molding, and minimal indistinct cytoplasm (Photo courtesy of Adekunle M. Adesina, MD, PhD)
Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5% to 10% of cancer diagnoses in children.
Medulloblastoma is a cancerous tumor, and also called cerebellar primitive neuroectodermal tumor (PNET) that starts in the region of the brain at the base of the skull called the posterior fossa. These tumors tend to spread to other parts of the brain and to the spinal cord.
A team of scientists from St. Jude Children's Research Hospital (Memphis, TN, USA) and their international colleagues determined the genetic predisposition to medulloblastoma beyond established cancer predisposition genes, by investigating germline loss-of-function (LOF) variation across all autosomal protein-coding genes in a cohort of 713 pediatric patients with medulloblastoma, 288 cancer-free children from the another study, and 118,479 cancer-free adults from the gnomAD database.
The investigators found that germline ELP1 LOF variants in patients with Sonic Hedgehog MBSHH were heterozygous, distributed across the full gene sequence, and very rare in the general population. In the discovery cohort, germline ELP1 variants accounted for 13% of patients with MBSHH. However, only 0.18 % (1 out of 542) of patients with a WNT, Group 3, or Group 4 medulloblastoma also exhibited germline ELP1 variants. Further analyses of two large series of 514 pediatric cancer patients and 2,272 adult cancer patients further confirmed that germline ELP1 LOF variants are strongly associated with MBSHH. They also replicated the association between germline ELP1 LOF variation and pediatric MBSHH based on 31 patients from two prospective patient series.
Tumors from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumor development in combination with constitutive activation of SHH signaling.
The authors concluded that overall, germline ELP1 LOF variants accounted for 14.4% (29 out of 202) of all pediatric patients with MBSHH, which considerably exceeds the burden of pathogenic germline variants in known MBSHH predisposition genes. Inheritance of pathogenic germline ELP1 LOF variants was confirmed in three parent-offspring trios based on whole-exome sequencing. The authors added “Broadly, we provide a strong rationale for expanding genetic studies beyond known cancer predisposition genes and motivate continued investigations into the contribution of translational deregulation in cancer and its potential utility as a target for molecularly guided intervention.” The study was published on April 1, 2020 in the journal Nature.
Related Links:
St. Jude Children's Research Hospital
Medulloblastoma is a cancerous tumor, and also called cerebellar primitive neuroectodermal tumor (PNET) that starts in the region of the brain at the base of the skull called the posterior fossa. These tumors tend to spread to other parts of the brain and to the spinal cord.
A team of scientists from St. Jude Children's Research Hospital (Memphis, TN, USA) and their international colleagues determined the genetic predisposition to medulloblastoma beyond established cancer predisposition genes, by investigating germline loss-of-function (LOF) variation across all autosomal protein-coding genes in a cohort of 713 pediatric patients with medulloblastoma, 288 cancer-free children from the another study, and 118,479 cancer-free adults from the gnomAD database.
The investigators found that germline ELP1 LOF variants in patients with Sonic Hedgehog MBSHH were heterozygous, distributed across the full gene sequence, and very rare in the general population. In the discovery cohort, germline ELP1 variants accounted for 13% of patients with MBSHH. However, only 0.18 % (1 out of 542) of patients with a WNT, Group 3, or Group 4 medulloblastoma also exhibited germline ELP1 variants. Further analyses of two large series of 514 pediatric cancer patients and 2,272 adult cancer patients further confirmed that germline ELP1 LOF variants are strongly associated with MBSHH. They also replicated the association between germline ELP1 LOF variation and pediatric MBSHH based on 31 patients from two prospective patient series.
Tumors from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumor development in combination with constitutive activation of SHH signaling.
The authors concluded that overall, germline ELP1 LOF variants accounted for 14.4% (29 out of 202) of all pediatric patients with MBSHH, which considerably exceeds the burden of pathogenic germline variants in known MBSHH predisposition genes. Inheritance of pathogenic germline ELP1 LOF variants was confirmed in three parent-offspring trios based on whole-exome sequencing. The authors added “Broadly, we provide a strong rationale for expanding genetic studies beyond known cancer predisposition genes and motivate continued investigations into the contribution of translational deregulation in cancer and its potential utility as a target for molecularly guided intervention.” The study was published on April 1, 2020 in the journal Nature.
Related Links:
St. Jude Children's Research Hospital
Latest Pathology News
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more