Automated Enzymatic Method Quantifies Pyruvate Kinase in Erythrocytes
By LabMedica International staff writers Posted on 05 Mar 2020 |

Image: The Agilent Cary 60 UV-Vis Spectrophotometer is efficient, accurate and flexible, and is designed to meet immediate and future challenges (Photo courtesy of Agilent Technologies).
A deficiency of red blood cell (RBC) pyruvate kinase (PK), inherited as an autosomal recessive trait, is the most common cause of hereditary nonspherocytic hemolytic anemia (HSHA). The hemolysis is owing to the inability of the PK-deficient RBCs to maintain adequate quantities of ATP.
Pyruvate kinase (PK) deficiency affects less than 1% of the population. As the most common cause of HSHA, testing for PK activity is commonly performed. PK activity is generally greater in reticulocytes than in mature RBCs and may explain the appearance of hemolytic anemia in patients with normal enzyme activity.
Scientists at the ARUP Institute (Salt Lake City, UT, USA) collected residual whole blood samples collected into tubes containing EDTA or heparin anticoagulant and sent to ARUP Laboratories were used after being deidentified. Because white blood cells contain 300 times the PK activity of RBCs, the two cell types were separated from each other and the plasma by using phthalate oil in a glass capillary tube that was centrifuged at 9,600g for five minutes and hemolysates were prepared.
PK activity was determined using a method proposed by the International Committee for Standardization in Hematology. PK catalyzes the reaction of phosphoenolpyruvate with ADP to form pyruvate and ATP. The pyruvate is reduced in the presence of lactate dehydrogenase and NADH to produce lactate and NAD+. For the manual method, the rate of absorbance decrease at 340 nm was determined using a Cary 60 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) and was used to derive the PK activity in conjunction with the molar absorptivity of 6,220 L/mol/cm. PK and hemoglobin (Hb) measurements were performed on a Roche cobas c501 analyzer (Roche Diagnostics, Basel, Switzerland).
The scientists reported that the accuracy of the automated PK assay was evaluated by comparing it with the manual method with 56 samples measured in two replicates over 10 days. PK activities ranged from 1.5 to 25.9 U/g Hb, and linear regression produced a slope where R2 = 0.93, indicating that the two methods produced the same results. Precision was evaluated by testing hemolysates in three replicates/day for 10 days. Within-run imprecision was 1.9% and 2.5% and total imprecision was 4.0% and 5.6% at 14.0 and 8.1 U/g Hb, respectively. The limit of blank was 0.0, and the limit of detection was 1.0 U/dL. Stability was determined in four sample types at three different temperatures; the changes were all was less than 10% when compared with t0. The current PK reference interval of 4.6 to 11.2 U/g Hb was verified.
The authors concluded that the ability to measure both components on a single automated platform and in the same hemolysate is an efficient method to replace a manual activity assay using two different analytical platforms. The study was published in the January 2020 issue of The Journal of Applied Laboratory Medicine.
Related Links:
ARUP Institute
Agilent Technologies
Roche Diagnostics
Pyruvate kinase (PK) deficiency affects less than 1% of the population. As the most common cause of HSHA, testing for PK activity is commonly performed. PK activity is generally greater in reticulocytes than in mature RBCs and may explain the appearance of hemolytic anemia in patients with normal enzyme activity.
Scientists at the ARUP Institute (Salt Lake City, UT, USA) collected residual whole blood samples collected into tubes containing EDTA or heparin anticoagulant and sent to ARUP Laboratories were used after being deidentified. Because white blood cells contain 300 times the PK activity of RBCs, the two cell types were separated from each other and the plasma by using phthalate oil in a glass capillary tube that was centrifuged at 9,600g for five minutes and hemolysates were prepared.
PK activity was determined using a method proposed by the International Committee for Standardization in Hematology. PK catalyzes the reaction of phosphoenolpyruvate with ADP to form pyruvate and ATP. The pyruvate is reduced in the presence of lactate dehydrogenase and NADH to produce lactate and NAD+. For the manual method, the rate of absorbance decrease at 340 nm was determined using a Cary 60 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) and was used to derive the PK activity in conjunction with the molar absorptivity of 6,220 L/mol/cm. PK and hemoglobin (Hb) measurements were performed on a Roche cobas c501 analyzer (Roche Diagnostics, Basel, Switzerland).
The scientists reported that the accuracy of the automated PK assay was evaluated by comparing it with the manual method with 56 samples measured in two replicates over 10 days. PK activities ranged from 1.5 to 25.9 U/g Hb, and linear regression produced a slope where R2 = 0.93, indicating that the two methods produced the same results. Precision was evaluated by testing hemolysates in three replicates/day for 10 days. Within-run imprecision was 1.9% and 2.5% and total imprecision was 4.0% and 5.6% at 14.0 and 8.1 U/g Hb, respectively. The limit of blank was 0.0, and the limit of detection was 1.0 U/dL. Stability was determined in four sample types at three different temperatures; the changes were all was less than 10% when compared with t0. The current PK reference interval of 4.6 to 11.2 U/g Hb was verified.
The authors concluded that the ability to measure both components on a single automated platform and in the same hemolysate is an efficient method to replace a manual activity assay using two different analytical platforms. The study was published in the January 2020 issue of The Journal of Applied Laboratory Medicine.
Related Links:
ARUP Institute
Agilent Technologies
Roche Diagnostics
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Molecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more