Fetal Cell-Based NIPT Demonstrated by Droplet Digital PCR
By LabMedica International staff writers Posted on 27 Feb 2020 |

Image: MACS Technology is a fast and gentle method for the isolation of viable and functionally active cells by magnetic labeling (Photo courtesy of University of Konstanz).
Noninvasive testing techniques are often used for fetal diagnosis of genetic abnormalities, but are limited by certain characteristics, including non-informative results. Thus, novel methods of noninvasive definitive diagnosis of fetal genetic abnormalities are needed.
Most noninvasive prenatal diagnostic tests (NIPT) on DNA today analyze cell-free fetal DNA, which is mixed in with large amounts of maternal cell-free DNA in the mother's blood. However, it has long been known that a very small number of fetal or placental cells, estimated at fewer than 10/mL, circulate in the blood of pregnant women.
Scientists at the National Research Institute for Child Health and Development (Tokyo, Japan) recruited 32 pregnant women without any obstetrical complications or abnormalities and malformations as determined by fetal ultrasonography at 20 weeks of gestation. Peripheral blood was obtained from each pregnant woman and non-nucleated cells were removed.
The washed nucleated blood cells were mixed with 10 μL each of CD45 microbeads and CD14 microbeads (Miltenyi Biotech GmbH, Bergisch Gladbach, Germany) and incubated for 15 minutes at 4 °C. The CD45–CD14– cell fraction was collected, white blood cells and large cells were removed to align the cell size, and cells were washed twice. The cells sorted by magnetic-activated cell sorting (MACS) were resuspended, processed and the stained cells were observed using the Axio Imager 2 fluorescence microscope system (Carl Zeiss Microscopy, Jena, Germany).
Single-cell–based droplet digital polymerase chain reaction (sc-ddPCR) was performed and after using the QX200 Droplet Generator, the PCR was subsequently analyzed with the signal of each droplet using the QX200 Droplet Reader (Bio-Rad, Hercules, CA, USA). DNA was extracted from each of the cell suspensions or umbilical cord blood samples. The team performed genetic confirmation of circulating male fetal cells in the CD45–CD14– cell fraction. The team used one reference probe, RPP30, and one Y-chromosome-specific probe for the SRY gene. One advantage of using that system is that it can analyze up to 3,000 individual cells per well.
The team’s modification of the sc-ddPCR system enabled the assessment of rare circulating fetal cells in the peripheral blood samples of pregnant women carrying male fetuses. However, the observation of more RPP30+SRY+ droplets in each sample was expected because two to six circulating fetal cells had been contained in 1 mL of maternal blood. When they applied their test to cell fractions from 13 maternal peripheral blood samples, they found that it correctly called only the three samples from women with a male fetus as SRY-positive and all 10 samples from women with a female fetus as SRY-negative.
The authors concluded that they had demonstrated that the modified sc-ddPCR system was able to effectively assess the genomic DNA of each targeted cell in a crudely sorted biological sample. This system is unprecedented in that the DNA of numerous individual live cells can be simply analyzed with high sensitivity and specificity without any whole-genome amplification, cell-fixation, and cell-staining steps. Moreover, this study serves as a proof of concept for noninvasive prenatal definitive diagnosis with extremely rare circulating fetal cells using our modified sc-ddPCR system. The study was published in the February 2020 issue of the Journal of Molecular Diagnostics.
Related Links:
National Research Institute for Child Health and Development
Miltenyi Biotech GmbH
Carl Zeiss Microscopy
Bio-Rad
Most noninvasive prenatal diagnostic tests (NIPT) on DNA today analyze cell-free fetal DNA, which is mixed in with large amounts of maternal cell-free DNA in the mother's blood. However, it has long been known that a very small number of fetal or placental cells, estimated at fewer than 10/mL, circulate in the blood of pregnant women.
Scientists at the National Research Institute for Child Health and Development (Tokyo, Japan) recruited 32 pregnant women without any obstetrical complications or abnormalities and malformations as determined by fetal ultrasonography at 20 weeks of gestation. Peripheral blood was obtained from each pregnant woman and non-nucleated cells were removed.
The washed nucleated blood cells were mixed with 10 μL each of CD45 microbeads and CD14 microbeads (Miltenyi Biotech GmbH, Bergisch Gladbach, Germany) and incubated for 15 minutes at 4 °C. The CD45–CD14– cell fraction was collected, white blood cells and large cells were removed to align the cell size, and cells were washed twice. The cells sorted by magnetic-activated cell sorting (MACS) were resuspended, processed and the stained cells were observed using the Axio Imager 2 fluorescence microscope system (Carl Zeiss Microscopy, Jena, Germany).
Single-cell–based droplet digital polymerase chain reaction (sc-ddPCR) was performed and after using the QX200 Droplet Generator, the PCR was subsequently analyzed with the signal of each droplet using the QX200 Droplet Reader (Bio-Rad, Hercules, CA, USA). DNA was extracted from each of the cell suspensions or umbilical cord blood samples. The team performed genetic confirmation of circulating male fetal cells in the CD45–CD14– cell fraction. The team used one reference probe, RPP30, and one Y-chromosome-specific probe for the SRY gene. One advantage of using that system is that it can analyze up to 3,000 individual cells per well.
The team’s modification of the sc-ddPCR system enabled the assessment of rare circulating fetal cells in the peripheral blood samples of pregnant women carrying male fetuses. However, the observation of more RPP30+SRY+ droplets in each sample was expected because two to six circulating fetal cells had been contained in 1 mL of maternal blood. When they applied their test to cell fractions from 13 maternal peripheral blood samples, they found that it correctly called only the three samples from women with a male fetus as SRY-positive and all 10 samples from women with a female fetus as SRY-negative.
The authors concluded that they had demonstrated that the modified sc-ddPCR system was able to effectively assess the genomic DNA of each targeted cell in a crudely sorted biological sample. This system is unprecedented in that the DNA of numerous individual live cells can be simply analyzed with high sensitivity and specificity without any whole-genome amplification, cell-fixation, and cell-staining steps. Moreover, this study serves as a proof of concept for noninvasive prenatal definitive diagnosis with extremely rare circulating fetal cells using our modified sc-ddPCR system. The study was published in the February 2020 issue of the Journal of Molecular Diagnostics.
Related Links:
National Research Institute for Child Health and Development
Miltenyi Biotech GmbH
Carl Zeiss Microscopy
Bio-Rad
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD
Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more
First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more
New Molecular Label to Help Develop Simpler and Faster Tuberculosis Tests
Tuberculosis (TB), the deadliest infectious disease globally, is responsible for infecting an estimated 10 million people each year and causing over 1 million deaths annually. While chest X-rays and molecular... Read more
Biomarker Discovery Paves Way for Blood Tests to Detect and Treat Osteoarthritis
The number of individuals affected by osteoarthritis is projected to exceed 1 billion by 2050. The primary risk factor for this common, often painful chronic joint condition is aging, and, like aging itself,... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreMicrobiology
view channel
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read more
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more