Optical Biosensor Reduces Time for Sepsis Diagnosis
By LabMedica International staff writers Posted on 12 Feb 2020 |

Image: Detection and quantification of procalcitonin and C‐reactive protein using detection of inflammatory biomarkers imager (DENIS) (Photo courtesy of Ecole Polytechnique Fédérale de Lausanne).
New point‐of‐care diagnostic devices are urgently needed for rapid and accurate diagnosis, particularly in the management of life‐threatening infections and sepsis, where immediate treatment is key.
A novel portable biosensor based on nanoparticle‐enhanced digital plasmonic imaging has been developed for rapid and sensitive detection of two sepsis‐related inflammatory biomarkers, procalcitonin (PCT) and C‐reactive protein (CRP) directly from blood serum.
Bioengineers from the Ecole Polytechnique Fédérale de Lausanne (Lausanne, Switzerland) and their colleagues drew on recent developments in nanotechnology and on light effects at a nanoscale to create a highly portable, easy-to-use device that can rapidly detect sepsis biomarkers in a patient's bloodstream, and their device takes just a few minutes to deliver a result, like a pregnancy test.
The device employs an optical metasurface, in this case a thin gold sheet containing arrays of billions of nanoholes. The metasurface concentrates light around the nanoholes so as to allow for exceptionally precise biomarker detection. With this type of metasurface, the team can detect sepsis biomarkers in a blood sample with nothing more than a simple LED and a standard CMOS camera. The team began by adding a solution of special nanoparticles to the sample that are designed to capture the biomarkers and then distribute this mixture on the metasurface.
The generated images are used to rapidly determine whether disease biomarkers are present in a sample and, if so, in what concentration. They used the new device to measure the blood serum levels of two important sepsis relevant biomarkers, PCT and CRP. Doctors can use this information to accelerate the triage of sepsis patients, ultimately saving lives. The device was installed at the Vall d'Hebron University Hospital (Barcelona, Spain) and used in blind tests to examine patient samples from the hospital's sepsis bank.
The authors concluded that portable digital nanoparticle‐enhanced plasmonic imager that enables rapid detection of two inflammatory sepsis‐related biomarkers, PCT and CRP. The unique nanoplasmonic mechanism through imaging of single gold nanoparticles (Au‐NPs) binding on the gold nanohole arrays (Au‐NHAs) enables highly sensitive and rapid biomarker detection directly in blood serum. The compact nanoplasmonic reader, built of inexpensive components, weighs less than 1 kg. The study was published on January 23, 2020 in the journal Small.
Related Links:
Ecole Polytechnique Fédérale de Lausanne
Vall d'Hebron University
A novel portable biosensor based on nanoparticle‐enhanced digital plasmonic imaging has been developed for rapid and sensitive detection of two sepsis‐related inflammatory biomarkers, procalcitonin (PCT) and C‐reactive protein (CRP) directly from blood serum.
Bioengineers from the Ecole Polytechnique Fédérale de Lausanne (Lausanne, Switzerland) and their colleagues drew on recent developments in nanotechnology and on light effects at a nanoscale to create a highly portable, easy-to-use device that can rapidly detect sepsis biomarkers in a patient's bloodstream, and their device takes just a few minutes to deliver a result, like a pregnancy test.
The device employs an optical metasurface, in this case a thin gold sheet containing arrays of billions of nanoholes. The metasurface concentrates light around the nanoholes so as to allow for exceptionally precise biomarker detection. With this type of metasurface, the team can detect sepsis biomarkers in a blood sample with nothing more than a simple LED and a standard CMOS camera. The team began by adding a solution of special nanoparticles to the sample that are designed to capture the biomarkers and then distribute this mixture on the metasurface.
The generated images are used to rapidly determine whether disease biomarkers are present in a sample and, if so, in what concentration. They used the new device to measure the blood serum levels of two important sepsis relevant biomarkers, PCT and CRP. Doctors can use this information to accelerate the triage of sepsis patients, ultimately saving lives. The device was installed at the Vall d'Hebron University Hospital (Barcelona, Spain) and used in blind tests to examine patient samples from the hospital's sepsis bank.
The authors concluded that portable digital nanoparticle‐enhanced plasmonic imager that enables rapid detection of two inflammatory sepsis‐related biomarkers, PCT and CRP. The unique nanoplasmonic mechanism through imaging of single gold nanoparticles (Au‐NPs) binding on the gold nanohole arrays (Au‐NHAs) enables highly sensitive and rapid biomarker detection directly in blood serum. The compact nanoplasmonic reader, built of inexpensive components, weighs less than 1 kg. The study was published on January 23, 2020 in the journal Small.
Related Links:
Ecole Polytechnique Fédérale de Lausanne
Vall d'Hebron University
Latest Technology News
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
- First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer
- Optical Biosensor Rapidly Detects Monkeypox Virus at Point of Care
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more