Imaging Mass Cytometry Uncovers Novel Breast Cancer Subgroups
By LabMedica International staff writers Posted on 03 Feb 2020 |

Image: The Hyperion Imaging System brings proven CyTOF technology together with imaging capability to empower simultaneous interrogation of four to 37 protein markers using Imaging Mass Cytometry (Photo courtesy of Fluidigm).
Changing the course of how diseases are treated and ultimately cured requires a comprehensive understanding of complex cellular phenotypes and their interrelationships in the spatial context of the tissue microenvironment.
Single-cell analyses have revealed extensive heterogeneity between and within human tumors, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions.
Scientists at the University of Zurich (Zurich, Switzerland) and their colleagues used imaging mass cytometry to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumor tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. The team concentrated their efforts on single cells within these images to deeply profile tumors' phenotypes and organization.
The investigators used the Hyperion Imaging System (Fluidigm, South San Francisco, CA, USA) which combines immunohistochemical staining with mass-spectrometry-based detection to generate images. For their analysis, they designed a breast cancer-specific imaging mass cytometry panel of 35 antibodies, including ones aimed at detecting established targets like estrogen receptor, progesterone receptor, and HER2, but also the proliferation marker Ki-67 and cell lineage markers. The team reported that their images were comparable to those generated via immunohistochemistry or immunofluorescence approaches.
By quantifying the expression of these markers, the team could gauge the spatial features of these single cells and place them into phenotype clusters, of which they identified 14 main ones. Additionally, they uncovered 18 single-cell pathology subgroups. These subgroups, they noted, differed from the classical clinical subtypes and were associated with distinct clinical outcomes. For instance, single-cell pathology subgroup 1 (SCP1) was associated with patients with a promising prognosis, while SCP3 was linked to a poorer prognosis.
When they compared clinically defined subtypes and single-cell pathology subgroups, the scientists found the single-cell-based approach was better able to predict the overall survival of a patient. They replicated their analysis on a set of tumor samples from 73 patients and likewise uncovered the same cellular metaclusters and single-cell pathology subgroups. They noted, though, a difference in the proportion of the subgroups present, which they attributed to differences in the patient-selection strategies for the two cohorts.
Chris Linthwaite, MBA, president and CEO of Fluidigm, said, “This landmark study is the first to demonstrate the potential clinical value of highly multiplexed Imaging Mass Cytometry to identify breast cancer subtypes that correlate with clinical outcomes. By shedding new light with single-cell spatial images and data about the features of the tumor microenvironment, we believe this study will further increase adoption of IMC in translational and clinical investigatios to deliver better predictive and personalized approaches to cancer care in the future.” The study was published on January 20, 2020 in the journal Nature.
Related Links:
University of Zurich
Fluidigm
Single-cell analyses have revealed extensive heterogeneity between and within human tumors, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions.
Scientists at the University of Zurich (Zurich, Switzerland) and their colleagues used imaging mass cytometry to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumor tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. The team concentrated their efforts on single cells within these images to deeply profile tumors' phenotypes and organization.
The investigators used the Hyperion Imaging System (Fluidigm, South San Francisco, CA, USA) which combines immunohistochemical staining with mass-spectrometry-based detection to generate images. For their analysis, they designed a breast cancer-specific imaging mass cytometry panel of 35 antibodies, including ones aimed at detecting established targets like estrogen receptor, progesterone receptor, and HER2, but also the proliferation marker Ki-67 and cell lineage markers. The team reported that their images were comparable to those generated via immunohistochemistry or immunofluorescence approaches.
By quantifying the expression of these markers, the team could gauge the spatial features of these single cells and place them into phenotype clusters, of which they identified 14 main ones. Additionally, they uncovered 18 single-cell pathology subgroups. These subgroups, they noted, differed from the classical clinical subtypes and were associated with distinct clinical outcomes. For instance, single-cell pathology subgroup 1 (SCP1) was associated with patients with a promising prognosis, while SCP3 was linked to a poorer prognosis.
When they compared clinically defined subtypes and single-cell pathology subgroups, the scientists found the single-cell-based approach was better able to predict the overall survival of a patient. They replicated their analysis on a set of tumor samples from 73 patients and likewise uncovered the same cellular metaclusters and single-cell pathology subgroups. They noted, though, a difference in the proportion of the subgroups present, which they attributed to differences in the patient-selection strategies for the two cohorts.
Chris Linthwaite, MBA, president and CEO of Fluidigm, said, “This landmark study is the first to demonstrate the potential clinical value of highly multiplexed Imaging Mass Cytometry to identify breast cancer subtypes that correlate with clinical outcomes. By shedding new light with single-cell spatial images and data about the features of the tumor microenvironment, we believe this study will further increase adoption of IMC in translational and clinical investigatios to deliver better predictive and personalized approaches to cancer care in the future.” The study was published on January 20, 2020 in the journal Nature.
Related Links:
University of Zurich
Fluidigm
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more