Circulating Trophoblast-Based Noninvasive Prenatal Testing Are Feasible
By LabMedica International staff writers Posted on 26 Dec 2019 |

Image: A CyteFinder instrument is an automated six channel fluorescence microscopes that rapidly image slides and employ machine learning to identify rare cells (Photo courtesy of RareCyte)
Circulating cells from the fetus or placenta in a pregnant woman’s blood, primarily trophoblasts and nucleated fetal red blood cells (fnRBCs), have long been appreciated as potential targets for noninvasive prenatal testing (NIPT) and diagnosis.
While cell-free DNA-based NIPT has taken off in recent years, a number of groups have been focusing their efforts on fetal cell-based methods, which would enable the analysis of pure fetal DNA instead of a mixture of maternal and fetal genetic material and possibly yield more accurate results with higher resolution.
Molecular Geneticists at Baylor College of Medicine (Houston TX, USA) and their colleagues collected two sets of blood samples from a total of 95 pregnant women who were recruited during prenatal visits, one set of 42 samples and another of 53 samples. Most came were from singleton pregnancies, and gestational age ranged from 8 weeks to 29 weeks.
To enrich trophoblasts, the scientists used a previously published positive selection protocol that they had since optimized. It involved antibodies against three trophoblast cell-surface antigens, HLA-G, TROP-2, and EpCAM, and magnetic bead selection. This was followed by immunostaining with anti-cytokeratin and CD45 antibodies. The samples were then spread on a slide and scanned using a CyteFinder instrument (RareCyte, Seattle, WA, USA). After manually identifying trophoblast candidates under the microscope, based on their cytokeratin patterns and the absence of CD45, the team picked individual cells using the RareCyte CytePicker.
The team, on average, identified five to seven trophoblasts per blood sample, with only two samples where no such cells could be found. Subsequent sequencing and genotyping showed that 94% to 96% of the cells scored as trophoblasts under the microscope were indeed of fetal origin. In addition, a little over half the samples had at least two high-quality trophoblasts where the sequencing results could be scored for both aneuploidy and small copy number variants.
For a total of 45 samples, the scientists had diagnostic results from amniocentesis or chorionic villus sampling (CVS) available. For 34 of these, they saw concordance with the single circulating trophoblast (SCT) sequencing results, and for eight cases, the diagnostic results were normal but SCT testing failed.
The authors concluded that SCT analysis is potentially a powerful tool for prenatal testing and diagnosis. They are optimistic that the recovery of trophoblasts can be improved. SCT testing has the potential to deliver a diagnostic result instead of being merely a screening test if an adequate number of trophoblast cells can be obtained for every sampled pregnancy. A longer-term goal would be to detect all de novo point mutations in a fetus. The study was published on November 27, 2019 in the American Journal of Human Genetics.
Related Links:
Baylor College of Medicine
RareCyte
While cell-free DNA-based NIPT has taken off in recent years, a number of groups have been focusing their efforts on fetal cell-based methods, which would enable the analysis of pure fetal DNA instead of a mixture of maternal and fetal genetic material and possibly yield more accurate results with higher resolution.
Molecular Geneticists at Baylor College of Medicine (Houston TX, USA) and their colleagues collected two sets of blood samples from a total of 95 pregnant women who were recruited during prenatal visits, one set of 42 samples and another of 53 samples. Most came were from singleton pregnancies, and gestational age ranged from 8 weeks to 29 weeks.
To enrich trophoblasts, the scientists used a previously published positive selection protocol that they had since optimized. It involved antibodies against three trophoblast cell-surface antigens, HLA-G, TROP-2, and EpCAM, and magnetic bead selection. This was followed by immunostaining with anti-cytokeratin and CD45 antibodies. The samples were then spread on a slide and scanned using a CyteFinder instrument (RareCyte, Seattle, WA, USA). After manually identifying trophoblast candidates under the microscope, based on their cytokeratin patterns and the absence of CD45, the team picked individual cells using the RareCyte CytePicker.
The team, on average, identified five to seven trophoblasts per blood sample, with only two samples where no such cells could be found. Subsequent sequencing and genotyping showed that 94% to 96% of the cells scored as trophoblasts under the microscope were indeed of fetal origin. In addition, a little over half the samples had at least two high-quality trophoblasts where the sequencing results could be scored for both aneuploidy and small copy number variants.
For a total of 45 samples, the scientists had diagnostic results from amniocentesis or chorionic villus sampling (CVS) available. For 34 of these, they saw concordance with the single circulating trophoblast (SCT) sequencing results, and for eight cases, the diagnostic results were normal but SCT testing failed.
The authors concluded that SCT analysis is potentially a powerful tool for prenatal testing and diagnosis. They are optimistic that the recovery of trophoblasts can be improved. SCT testing has the potential to deliver a diagnostic result instead of being merely a screening test if an adequate number of trophoblast cells can be obtained for every sampled pregnancy. A longer-term goal would be to detect all de novo point mutations in a fetus. The study was published on November 27, 2019 in the American Journal of Human Genetics.
Related Links:
Baylor College of Medicine
RareCyte
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more