LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Human Autoinflammatory Disease Identified

By LabMedica International staff writers
Posted on 24 Dec 2019
Image: Innate immune cells: heterozygous mutations of the RIPK1 caspase-8 cleavage site cause the autoinflammatory disease CRIA syndrome (Photo courtesy of Walter and Eliza Hall Institute)
Image: Innate immune cells: heterozygous mutations of the RIPK1 caspase-8 cleavage site cause the autoinflammatory disease CRIA syndrome (Photo courtesy of Walter and Eliza Hall Institute)
Autoinflammatory diseases are caused by abnormal activation of the innate immune system, leading to recurrent episodes of fever and inflammation that can damage vital organs.

Scientists from Australia and the USA have discovered and identified the genetic cause of a previously unknown human autoinflammatory disease. They have determined that the autoinflammatory disease, which they termed cleavage-resistant RIPK1-induced autoinflammatory (CRIA) syndrome, is caused by a mutation in a critical cell death component called RIPK1.

Scientists from the Walter and Eliza Hall Institute (Parkville, Australia) and the National Institutes of Health (Bethesda, MD, USA) have described patients from three families with a history of episodic high fevers and painful swollen lymph nodes. The patients, who were diagnosed with a new autoinflammatory disease (CRIA syndrome), had a host of other inflammatory symptoms which began in childhood and continued into their adult years.

The teams sequenced the entire exome of each patient and discovered unique mutations in the exact same amino acid of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in each of the three families. RIPL1is a serine-threonine kinase which transduces inflammatory and cell-death signals (programmed necrosis) following death receptors ligation, activation of pathogen recognition receptors (PRRs), and DNA damage.

To define the mechanism for this disease, the scientists generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1−/− mice died post-natally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner.

Najoua Lalaoui, PhD, the first author of the study, said, “Cell death pathways have developed a series of inbuilt mechanisms that regulate inflammatory signals and cell death, because the alternative is so potentially hazardous. However in this disease, the mutation in RIPK1 is overcoming all the normal checks and balances that exist, resulting in uncontrolled cell death and inflammation.”

The authors concluded that their results demonstrated the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life. The study was published on December 11, 2019 in the journal Nature.

Related Links:
Walter and Eliza Hall Institute
National Institutes of Health


Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Homocysteine Quality Control
Liquichek Homocysteine Control
Gold Member
Collection and Transport System
PurSafe Plus®

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more