Immune Cells Linked to Malaria-Induced Anemia Through Autoantibody Production
By LabMedica International staff writers Posted on 28 Nov 2019 |

Image: Photomicrograph of a blood smear that revealed the presence of numerous Plasmodium falciparum ring-form parasites. Note that some red blood cells (RBCs) contain multiple parasites. Anemia is a common and sometimes deadly complication of malaria infections (Photo courtesy of Centers of Disease Control and Prevention/Dr. Greene).
Malaria is still a major global health threat with over 200 million new infections and around 400,000 deaths per year. Anemia is a common complication associated with malaria that contributes significantly to the great morbidity and mortality associated with the disease.
Despite its high clinical relevance, the mechanisms underlying malarial anemia in patients remain largely unknown. The difficulty in studying this syndrome arises at least in part from its multi-factorial etiology, as malaria causes both the clearance (through complement-mediated lysis or phagocytosis) of infected and uninfected erythrocytes and bone marrow dyserythropoiesis.
An international team of scientists led by those at New York University School of Medicine (New York City, NY, USA) recruited 24 patients who were aged between 18 and 65 years, and a diagnosis of Plasmodium falciparum malaria by microscopy. This cohort suffered from mild anemia with average hemoglobin levels of 12.4 g/dL (males) and 10.2 g/dL (females). Plasma and peripheral blood mononuclear cells (PBMC) were isolated from peripheral venous blood by Ficoll purification and stored at −80 °C until temperature-controlled transportation from Germany to the New York University. Peripheral venous blood from healthy malaria-naïve donors was obtained on the day of the study.
The scientists performed flow cytometry on a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed with FlowJo (Tree Star, Ashland, OR, USA). Intracellular T-bet staining was performed using the True-Nuclear Transcription Factor Buffer Set (Biolegend, San Diego, CA, USA). Enzyme-linked immunosorbent assays were performed to estimate malarial antibodies. Assessment of the erythrocyte lysis capacity of plasma was performed following previously described methods with small modifications. Supernatants were read in a spectrophotometer at 414 nm to assess erythrocyte lysis. ELISPOTs were performed as previously reported.
The team identified the production of an unusual type of immune B-cell: FcRL5+T-bet+ B-cells, that increases anti-phosphatidylserine (PS) antibody production associated with the development of anemia in the patients. These immune cells also developed and produced anti-PS antibodies in blood drawn from uninfected people that was then exposed to broken remnants of malaria-infected red blood cells in the laboratory.
Ana M. Rodriguez, PhD, a Professor of Microbiology and a senior author of the study, said, "There is a great need for novel targeted treatments for malaria-induced anemia, which is common and can be fatal for many malaria patients. The unique phenotype and specificity of these immune B-cells could allow them to be used as a biomarker for anemia or as a target for new therapies.” The study was published on November 12, 2019 in the journal eLife.
Related Links:
New York University School of Medicine
Becton Dickinson
Tree Star
Biolegend
Despite its high clinical relevance, the mechanisms underlying malarial anemia in patients remain largely unknown. The difficulty in studying this syndrome arises at least in part from its multi-factorial etiology, as malaria causes both the clearance (through complement-mediated lysis or phagocytosis) of infected and uninfected erythrocytes and bone marrow dyserythropoiesis.
An international team of scientists led by those at New York University School of Medicine (New York City, NY, USA) recruited 24 patients who were aged between 18 and 65 years, and a diagnosis of Plasmodium falciparum malaria by microscopy. This cohort suffered from mild anemia with average hemoglobin levels of 12.4 g/dL (males) and 10.2 g/dL (females). Plasma and peripheral blood mononuclear cells (PBMC) were isolated from peripheral venous blood by Ficoll purification and stored at −80 °C until temperature-controlled transportation from Germany to the New York University. Peripheral venous blood from healthy malaria-naïve donors was obtained on the day of the study.
The scientists performed flow cytometry on a FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA) and analyzed with FlowJo (Tree Star, Ashland, OR, USA). Intracellular T-bet staining was performed using the True-Nuclear Transcription Factor Buffer Set (Biolegend, San Diego, CA, USA). Enzyme-linked immunosorbent assays were performed to estimate malarial antibodies. Assessment of the erythrocyte lysis capacity of plasma was performed following previously described methods with small modifications. Supernatants were read in a spectrophotometer at 414 nm to assess erythrocyte lysis. ELISPOTs were performed as previously reported.
The team identified the production of an unusual type of immune B-cell: FcRL5+T-bet+ B-cells, that increases anti-phosphatidylserine (PS) antibody production associated with the development of anemia in the patients. These immune cells also developed and produced anti-PS antibodies in blood drawn from uninfected people that was then exposed to broken remnants of malaria-infected red blood cells in the laboratory.
Ana M. Rodriguez, PhD, a Professor of Microbiology and a senior author of the study, said, "There is a great need for novel targeted treatments for malaria-induced anemia, which is common and can be fatal for many malaria patients. The unique phenotype and specificity of these immune B-cells could allow them to be used as a biomarker for anemia or as a target for new therapies.” The study was published on November 12, 2019 in the journal eLife.
Related Links:
New York University School of Medicine
Becton Dickinson
Tree Star
Biolegend
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
- Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more