LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients

By LabMedica International staff writers
Posted on 30 Sep 2019
Print article
Image: A photomicrograph showing two glomeruli in diabetic kidney disease: the acellular light purple areas within the capillary tufts are the destructive mesangial matrix deposits (Photo courtesy of Wikimedia Commons).
Image: A photomicrograph showing two glomeruli in diabetic kidney disease: the acellular light purple areas within the capillary tufts are the destructive mesangial matrix deposits (Photo courtesy of Wikimedia Commons).
A large genome-wide association study (GWAS) identified 16 genetic loci linked to the development of kidney disease by individuals with type I diabetes.

Although earlier studies have found that diabetic kidney disease has a heritable component, searches for the genetic determinants of this complication of diabetes have had limited success.

To identify genetic variants that predispose people to diabetic kidney disease, investigators at Harvard Medical School (Boston, MA, USA) and their colleagues performed genome-wide association analyses on samples from19,406 individuals of European descent with type I diabetes, with and without kidney disease.

Results revealed 16 genome-wide loci linked to significant risk of developing kidney disease. The variant with the strongest association was a common missense mutation (a point mutation in which a single nucleotide change results in a codon that codes for a different amino acid) in the collagen type IV alpha 3 chain (COL4A3) gene, which encodes a major structural component of the glomerular basement membrane (GBM).

Mutations in COL4A3 have been implicated in heritable kidney disorders, including the progressive inherited nephropathy Alport syndrome.

“This study represents a substantial advance in the genetics of diabetic kidney disease, where previous studies had yielded few robust associations,” said senior author Dr. Jose C. Florez, professor of medicine at Harvard Medical School. “The 16 diabetic kidney disease-associated regions provide novel insights into the pathogenesis of diabetic kidney disease, identifying potential biological targets for prevention and treatment.”

Related Links:
Harvard Medical School

New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Refrigerated Centrifuge
CAPPRondo Refrigerated Centrifuge
New
Automated Immunoassay Analyzer
Phadia 1000

Print article

Channels

Molecular Diagnostics

view channel
Image: The DNA sequencing method indentifies the bacterial causes of infections to determine the most effective antibiotics for treatment (Photo courtesy of Shutterstock)

New DNA Test Diagnoses Bacterial Infections Faster and More Accurately

Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more

Pathology

view channel
Image: The Results Manager System (Photo courtesy of QuidelOrtho)

Informatics Solution Elevates Laboratory Efficiency and Patient Care

QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Sekisui Diagnostics UK Ltd.