LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Signature for Beta-Cell Autoimmunity Predicts Type 1 Diabetes

By LabMedica International staff writers
Posted on 28 Aug 2019
Image: Human pancreatic islet stained with glucagon antibody (red) and insulin antibody (blue). Glucagon is produced by alpha cells, while beta cells produce insulin (Photo courtesy of University of Turku).
Image: Human pancreatic islet stained with glucagon antibody (red) and insulin antibody (blue). Glucagon is produced by alpha cells, while beta cells produce insulin (Photo courtesy of University of Turku).
The appearance of Type 1 diabetes (T1D)-associated autoantibodies is the first and only measurable parameter to predict progression toward T1D in genetically susceptible individuals.

However, autoantibodies indicate an active autoimmune reaction, wherein the immune tolerance is already broken. Therefore, there is a clear and urgent need for new biomarkers that predict the onset of the autoimmune reaction preceding autoantibody positivity or reflect progressive beta-cell destruction.

A team of scientists working with the University of Turku (Turku, Finland) used mRNA-sequencing-based analysis of 306 samples including fractionated samples of CD4+ and CD8+ T cells as well as CD4-CD8- cells fractions and unfractionated peripheral blood mononuclear cell (PBMC) samples longitudinally collected from seven children that developed beta-cell autoimmunity (Cases) at a young age and their matched controls.

The investigators identified transcripts, including interleukin-32 (IL32) that were upregulated before T1D-associated autoantibodies appeared. Single-cell RNA-seq studies revealed that high IL32 in Case samples were contributed mainly by activated T cells and NK cells. Further, they showed that IL32 expression can be induced by a virus and cytokines in pancreatic islets and beta-cells, respectively.

The authors concluded that their results provide a basis for early detection of aberrations in the immune system function before T1D and suggest a potential role for IL32 in the pathogenesis of T1D. Riitta Lahesmaa, MD, a Professor of Biotechnology and senior author of the study, said, “Our results provide a starting point for identifying those children who are likely to develop type 1 diabetes later. Next, we will validate and expand the study in a larger cohort and analyze the role of the signature molecules in the pathogenesis of type 1 diabetes. Our goal is to develop tools and means that would enable the prevention of type 1 diabetes.” The study was published in the July 2019 issue of the journal Diabetes.

Related Links:
University of Turku

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more