Melanoma Cells Secrete Factors to Promote Tumor Growth
|
By LabMedica International staff writers Posted on 12 Feb 2019 |

Image: Part of the Myosin II structure. Atoms in the heavy chain are colored pink (on the left-hand side); atoms in the light chains are colored faded-orange and faded-yellow (also on the left-hand side) (Photo courtesy of Wikimedia Commons).
A team of British researchers found that high Myosin II activity in invasive melanoma cells induced reprogramming of innate immune responses in the local microenvironment to support tumor growth.
Myosin II (also known as conventional myosin) is the myosin type responsible for producing contraction in muscle cells, and ROCK (Rho-associated protein kinase)-Myosin II was found to drive rounded-amoeboid migration in cancer cells during metastatic dissemination.
Following up this line of research, investigators at Queen Mary University of London (United Kingdom) reported in the January 31, 2019, online edition of the journal Cell that analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity were predominant in the invasive fronts of primary tumors in proximity to tumor-associated macrophages and vessels. Proteomic analysis showed that ROCK-Myosin II activity in amoeboid cancer cells controlled an immunomodulatory secretome – comprising all the factors secreted by the cell into the extracellular space - enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages supported an abnormal system of blood vessels, which ultimately facilitated tumor progression.
Mechanistically, amoeboid cancer cells maintained their behavior via ROCK-Myosin II-driven interleukin 1 alpha (IL-1alpha) secretion and NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation.
In addition, using an array of tumor models, the investigators demonstrated that high Myosin II activity in tumor cells reprogrammed the innate immune microenvironment to support tumor growth.
"This study highlights how cancer cells interact with and influence their surrounding environment to grow and spread. Developing treatments that target the chemicals that alter the immune system could help to prevent the spread of the disease," said senior author Dr. Victoria Sanz-Moreno, professor of cancer cell biology at Queen Mary University of London. "We are excited to find out whether inhibitor drugs could be used in combination with other targeted therapies. By identifying effective treatment combinations, we hope that in the future Myosin II and interleukin 1alpha inhibitors could be used to improve patient outcomes and reduce the risk of melanoma coming back."
Related Links:
Queen Mary University of London
Myosin II (also known as conventional myosin) is the myosin type responsible for producing contraction in muscle cells, and ROCK (Rho-associated protein kinase)-Myosin II was found to drive rounded-amoeboid migration in cancer cells during metastatic dissemination.
Following up this line of research, investigators at Queen Mary University of London (United Kingdom) reported in the January 31, 2019, online edition of the journal Cell that analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity were predominant in the invasive fronts of primary tumors in proximity to tumor-associated macrophages and vessels. Proteomic analysis showed that ROCK-Myosin II activity in amoeboid cancer cells controlled an immunomodulatory secretome – comprising all the factors secreted by the cell into the extracellular space - enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages supported an abnormal system of blood vessels, which ultimately facilitated tumor progression.
Mechanistically, amoeboid cancer cells maintained their behavior via ROCK-Myosin II-driven interleukin 1 alpha (IL-1alpha) secretion and NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation.
In addition, using an array of tumor models, the investigators demonstrated that high Myosin II activity in tumor cells reprogrammed the innate immune microenvironment to support tumor growth.
"This study highlights how cancer cells interact with and influence their surrounding environment to grow and spread. Developing treatments that target the chemicals that alter the immune system could help to prevent the spread of the disease," said senior author Dr. Victoria Sanz-Moreno, professor of cancer cell biology at Queen Mary University of London. "We are excited to find out whether inhibitor drugs could be used in combination with other targeted therapies. By identifying effective treatment combinations, we hope that in the future Myosin II and interleukin 1alpha inhibitors could be used to improve patient outcomes and reduce the risk of melanoma coming back."
Related Links:
Queen Mary University of London
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read more
New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
Acute myeloid leukemia (AML) is one of the most aggressive blood cancers, marked by poor survival rates and limited treatment options, especially in patients who do not respond to standard therapies.... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







 assay.jpg)