We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Therapy Cures Severe Autoimmune Disorder in Model

By LabMedica International staff writers
Posted on 24 Jan 2019
Image: A diagram of how regulatory T-cells suppress effector T-cells and dendritic cells (Photo courtesy of Wikimedia Commons).
Image: A diagram of how regulatory T-cells suppress effector T-cells and dendritic cells (Photo courtesy of Wikimedia Commons).
An often fatal autoimmune disorder was cured in mice by using a lentiviral vector to insert a working copy of the defective FOXP3 (Forkhead box P3, also known as scurfin) gene into blood stem cells.

IPEX (Immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome is a severe autoimmune disease caused by mutations in FoxP3, a transcription factor required for the development and function of regulatory T-cells (Treg cells). Treg cells keep the body's immune system in check; without them, the immune system attacks the body's own tissues and organs.

IPEX can affect the intestines, skin and hormone-producing glands such as the pancreas and thyroid, as well as other parts of the body. While the syndrome can be successfully treated with a bone marrow transplant, suitable donors are often unavailable, and the patient may be too ill to undergo the procedure.

To replace the bone marrow transplant option, investigators at the University of California, Los Angeles (USA) developed a strategy for autologous hematopoietic stem cell transplant (HSCT) and gene therapy utilizing a lentiviral vector (LV) to restore FoxP3 expression under the control of endogenous human FOXP3 regulatory elements. The viral vector was engineered so that the gene was expressed only in regulatory T-cells, but not in other types of cells.

The investigators published their results in the January 10, 2019, online edition of the journal Cell Stem Cell. They reported that both mouse transplant models and humanized mice engrafted with LV-modified hematopoietic stem cells showed high levels of LV expression selective for CD4+CD25+FoxP3+ Treg cells. LV transduction of the functional FoxP3 gene into HSCs restored development of functional FoxP3+ Treg cells that suppressed T-cell proliferation in vitro and reversed the IPEX autoimmune phenotype in vivo.

Senior author Dr. Donald Kohn, professor of pediatrics, microbiology, immunology, and molecular genetics at the University of California, Los Angeles, said, "To treat humans with IPEX, blood stem cells would be removed from the bone marrow of patients with IPEX. Then, the FoxP3 mutation would be corrected in a lab using the IPEX-targeting vector. The patients would receive a transplant of their own corrected blood stem cells, which would produce a continuous life-long supply of regulatory T- cells."

"It is exciting to see how our gene therapy techniques can be used for multiple immune conditions," said Dr. Kohn. "This is the first time we have tested a technique that targets an autoimmune disorder, and the findings could help us better understand or lead to novel treatments for other autoimmune conditions such as multiple sclerosis or lupus."

Related Links:
University of California, Los Angeles

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Laboratory Software
ArtelWare
New
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more