Genetic Mutation Identified for TB Vulnerability
By LabMedica International staff writers Posted on 15 Jan 2019 |

Image: Photomicrograph of Acid-fast Ziehl-Neelsen Staining of Mycobacterium tuberculosis in a sputum smear (Photo courtesy of Rockefeller University).
About one in five people worldwide are infected with Mycobacterium tuberculosis, the bacterium that causes tuberculosis. Of those, only 10%, at most, will show symptoms, because most immune systems have tools to fight the microbe. When these tools are absent or dysfunctional, however, the infection can damage the lungs and other organs, and even cause death.
Genetic mutations have been uncovered that rob the immune system of its ability to combat more ubiquitous germs of the same bacterial family, mycobacteria. Molecular abnormalities have been elucidated that make people vulnerable to mycobacterial infections. This evidence points to strategies for treating or preventing some cases of tuberculosis (TB).
A large international team of scientists led by the Rockefeller University (New York, NY, USA) collected DNA samples from patients with active forms of the disease. By analyzing these samples, the team discovered that the risk of developing TB is heightened in people who have two copies of a particular variation to the gene coding for the enzyme tyrosine-protein kinase (TYK2).
The team reported that patients with autosomal recessive, complete interleukin (IL)-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. They showed that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. They also showed that the development of IFN-γ–producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA−CCR6+), is dependent on both IL-12 and IL-23. They showed that the genes IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population.
Jean-Laurent Casanova, MD, PhD, a professor and senior author of the study, said, “In Europeans, one in 600 people have two copies of this TYK2 variation. And in the rest of the population the rate is between one in 1,000 to one in 10,000, which is still not rare. Here at Rockefeller, there are probably around four to six people who have this genetic predisposition to TB. Yet, that is not to say that those people will actually develop the disease, and, in fact, they probably won't. In New York, someone can have this mutation and their risk of getting TB is effectively zero. But if that person goes to work in a TB hospital in Africa, then the likelihood of getting TB is high, one hundredfold higher than it would be for a person without the genetic variant.” The study was published on December 21, 2018, in the journal Science Immunology.
Related Links:
Rockefeller University
Genetic mutations have been uncovered that rob the immune system of its ability to combat more ubiquitous germs of the same bacterial family, mycobacteria. Molecular abnormalities have been elucidated that make people vulnerable to mycobacterial infections. This evidence points to strategies for treating or preventing some cases of tuberculosis (TB).
A large international team of scientists led by the Rockefeller University (New York, NY, USA) collected DNA samples from patients with active forms of the disease. By analyzing these samples, the team discovered that the risk of developing TB is heightened in people who have two copies of a particular variation to the gene coding for the enzyme tyrosine-protein kinase (TYK2).
The team reported that patients with autosomal recessive, complete interleukin (IL)-12Rβ2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. They showed that αβ T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. They also showed that the development of IFN-γ–producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA−CCR6+), is dependent on both IL-12 and IL-23. They showed that the genes IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population.
Jean-Laurent Casanova, MD, PhD, a professor and senior author of the study, said, “In Europeans, one in 600 people have two copies of this TYK2 variation. And in the rest of the population the rate is between one in 1,000 to one in 10,000, which is still not rare. Here at Rockefeller, there are probably around four to six people who have this genetic predisposition to TB. Yet, that is not to say that those people will actually develop the disease, and, in fact, they probably won't. In New York, someone can have this mutation and their risk of getting TB is effectively zero. But if that person goes to work in a TB hospital in Africa, then the likelihood of getting TB is high, one hundredfold higher than it would be for a person without the genetic variant.” The study was published on December 21, 2018, in the journal Science Immunology.
Related Links:
Rockefeller University
Latest Immunology News
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
- Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients
- Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more