Molecular Diagnostics Prevents Malaria in Blood Banks
By LabMedica International staff writers Posted on 18 Oct 2018 |

Image: The ABI 7500 Real-Time PCR system (Photo courtesy of Applied Biosystems).
Haemovigilance is required to identify and prevent the occurrence or recurrence of unwanted transfusion-related transmissions and to increase the safety, efficacy and efficiency of blood transfusions.
Malaria can be transmitted by blood transfusion through donations collected from asymptomatic or parasitic donors. The parasites are released into the bloodstream during its life cycle and will therefore be present in donated blood by infected individuals and can be fatal to the recipient.
Brazilian scientists collaborating with the Federal University of Pará (Belem, Brazil) obtained positive samples of Plasmodium vivax (22,000 parasites/µL) and P. malariae (400 parasites/µL) were obtained from patients with malaria and a positive sample of P. falciparum. Samples of potential donors were collected in two blood bank centers and among them, 1,324 were obtained from nine reference units and 900 were collected from blood donors in Porto Velho.
DNA samples were extracted from 150 µL blood by phenol/chloroform followed by ethanol precipitation method, with modifications. The DNA was quantified on NanoDrop ND 1000, in 260 nm to 280 nm wavelength range and final concentration was adjusted to 100 ng/µL. A real-time polymerase chain reaction (mt-qPCR) was performed to determine the presence and absence of the malaria parasite mitochondrial (mtDNA), based on primer extension and posterior hybridization with TaqMan probes on ABI Prism 7500 sequence detection system.
The team reported that malaria parasites were detected in 10 of 2,224 blood donors (0.45%). In all 10 positive samples, only P. vivax mtDNA was detected. The positivity for Plasmodium was observed in only three blood banks. The mt-qPCR was highly efficient, and the analytic sensitivity for P. vivax was determined (0.000006 parasites/µL). In samples collected in Porto Velho, only P. vivax was detected using both molecular diagnostic methods (mtDNA and 18S rRNA).
The authors concluded mt-qPCR is efficient for malaria molecular diagnostics, presenting promising results with good analytic sensitivity. It is a fast and easy molecular methodology to detect mtDNA of the three most frequent malaria parasites, presenting a potential for large-scale use in the prevention of transfusion-transmitted malaria by screening for potential donors as part of malaria haemovigilance in blood banks. The study was published on October 1, 2018, in the Malaria Journal.
Related Links:
Federal University of Pará
Malaria can be transmitted by blood transfusion through donations collected from asymptomatic or parasitic donors. The parasites are released into the bloodstream during its life cycle and will therefore be present in donated blood by infected individuals and can be fatal to the recipient.
Brazilian scientists collaborating with the Federal University of Pará (Belem, Brazil) obtained positive samples of Plasmodium vivax (22,000 parasites/µL) and P. malariae (400 parasites/µL) were obtained from patients with malaria and a positive sample of P. falciparum. Samples of potential donors were collected in two blood bank centers and among them, 1,324 were obtained from nine reference units and 900 were collected from blood donors in Porto Velho.
DNA samples were extracted from 150 µL blood by phenol/chloroform followed by ethanol precipitation method, with modifications. The DNA was quantified on NanoDrop ND 1000, in 260 nm to 280 nm wavelength range and final concentration was adjusted to 100 ng/µL. A real-time polymerase chain reaction (mt-qPCR) was performed to determine the presence and absence of the malaria parasite mitochondrial (mtDNA), based on primer extension and posterior hybridization with TaqMan probes on ABI Prism 7500 sequence detection system.
The team reported that malaria parasites were detected in 10 of 2,224 blood donors (0.45%). In all 10 positive samples, only P. vivax mtDNA was detected. The positivity for Plasmodium was observed in only three blood banks. The mt-qPCR was highly efficient, and the analytic sensitivity for P. vivax was determined (0.000006 parasites/µL). In samples collected in Porto Velho, only P. vivax was detected using both molecular diagnostic methods (mtDNA and 18S rRNA).
The authors concluded mt-qPCR is efficient for malaria molecular diagnostics, presenting promising results with good analytic sensitivity. It is a fast and easy molecular methodology to detect mtDNA of the three most frequent malaria parasites, presenting a potential for large-scale use in the prevention of transfusion-transmitted malaria by screening for potential donors as part of malaria haemovigilance in blood banks. The study was published on October 1, 2018, in the Malaria Journal.
Related Links:
Federal University of Pará
Latest Hematology News
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
- Next Generation Instrument Screens for Hemoglobin Disorders in Newborns
Channels
Clinical Chemistry
view channel
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more