LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Antibiotic-Resistant Mutations Revealed by Sequencing Method

By LabMedica International staff writers
Posted on 11 Oct 2018
Image: The NextSeq 550 System brings the power of a high-throughput sequencing system to the benchtop (Photo courtesy of Illumina).
Image: The NextSeq 550 System brings the power of a high-throughput sequencing system to the benchtop (Photo courtesy of Illumina).
Antimicrobial resistance is on the rise and is responsible for millions of deaths every year. Bacterial populations consistently and rapidly overcome the challenge imposed by the use of a new antibiotic.

The genomic basis of resistance is relatively straightforward to establish for resistance conferred by acquisition of a specific gene. The repertoire of resistance genes (resistome) is now well defined and there are several curated databases and software prediction tools for resistance genes detection.

Microbiologists at the University of Melbourne (Melbourne, Australia) and their colleagues have developed a deep sequencing-based strategy for characterizing resistance-related mutations in mixed bacterial populations. The approach, known as resistance mutation sequencing (RM-seq), builds on the rationale behind low error amplicon sequencing (LEA-seq), a targeted sequencing method that involves molecular barcoding. By tweaking that method to develop RM-seq, the team was able to look at several samples simultaneously.

The scientists used Staphylococcus aureus and Mycobacterium tuberculosis and demonstrated that complex resistant sub-populations can be effectively characterized in vitro or detected in vivo using RM-seq. Genomic DNA was extracted and processed. Polymerase chain reactions were performed. The resulting amplicons comprising Illumina adaptor and indices was purified with Agencourt AMPure XP magnetic beads and sequenced on Illumina MiSeq or NextSeq. DNA was extracted from isolates cultured from sputum specimens to detect resistant sub-populations of M. tuberculosis.

The team reported that the sensitive detection of very low-frequency resistant sub-populations permits characterization of antibiotic-linked mutational repertoires in vitro and detection of rare resistant populations during infections. Accurate quantification of resistance mutations enables phenotypic screening of mutations conferring pleiotropic phenotypes such as in vivo persistence, collateral sensitivity or cross-resistance. RM-seq will facilitate comprehensive detection, characterization and surveillance of resistant bacterial populations. In pools of S. aureus selected on the antibiotic rifampicin, the team identified 72 specific mutations in a known "rifampicin resistance-determining region," including quantifiable mutations in the rpoB gene.

Romain Guérillot, PhD, the first author of the study, said, “In a biological sample, you can have a small population of resistant clones that may not be detected by traditional antibiotic resistance testing. This method, because it's based on deep sequencing, allows us to identify, accurately, very small subpopulations of resistant clones.” The study was published on August 31, 2018, in the journal Genome Medicine.

Related Links:
University of Melbourne

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more