LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Integrated Analyses Offer Molecular Insights to Tumor Subtypes

By LabMedica International staff writers
Posted on 19 Jul 2018
Print article
Image: A histopathology of mixed germ cell tumor of the testes demonstrating the high-grade cytology, typical for embryonal carcinoma (Photo courtesy of Nephron).
Image: A histopathology of mixed germ cell tumor of the testes demonstrating the high-grade cytology, typical for embryonal carcinoma (Photo courtesy of Nephron).
The most common malignancy of young adult males of European descent are testicular germ cell tumors (TGCTs) of the type derived from germ cell neoplasia in situ (GCNIS). There are two major histologic types: pure classic seminoma and nonseminomatous germ cell tumors (NSGCTs).

Seminoma often has more indolent behavior, while NSGCT tends to occur at younger ages and confer higher mortality. TGCTs are now highly treatable, and overall relative survival of men with TGCTs exceeds 95%; however, survivors can experience devastating late effects of treatment.

An extensive team of scientists collaborating with those at University of North Carolina at Chapel Hill (Chapel Hill, NC, USA) studied 137 primary testicular germ cell tumors (TGCTs) using high-dimensional assays of genomic, epigenomic, transcriptomic, and proteomic features. The median age of diagnosis was 31 years, with a range of 14 to 67. Patient tumor histology was classified according to a consensus of expert pathologists. Molecular and genomic data were collected using reverse phase protein arrays (RPPAs), whole-exome DNA sequencing, RNA-seq, miRNA sequencing, DNA methylation arrays, and SNP arrays for copy number analysis.

The team reported that as expected, the 72 seminomas in this set clustered apart from the non-seminomatous tumors, based on these molecular data. They saw relatively limited mutation frequencies across most of the histological subtypes. Just three genes, KIT, KRAS, and NRAS, were significantly mutated in the TGCTs, and those recurrent mutations were limited to the seminoma subtype. Within seminomas, DNA methylation and immune infiltration differences also tended to coincide with the presence or absence of KIT gene mutations. Still other mutation frequency, ploidy, DNA methylation, and/or miRNA expression shifts corresponded with the remaining non-seminomatous subtypes.

In teratoma and yolk sac tumors, the group saw enhanced expression of a miRNA called miR-375 that is typically found at low levels in blood samples from healthy individuals. On the other hand, the embyronal carcinomas had higher-than-usual expression of miR-19 and other miRNAs, they noted, and were marked by DNA methylation at non-canonical cytosine sites.

The authors concluded the new TGCT molecular profiles afforded a more complete view of previously articulated hypotheses, provide additional insights into mechanisms of TGCT tumorigenesis, and identify possible new approaches to the treatment of TGCTs. Katherine Hoadley, PhD, is an assistant professor in Cancer Genetics and senior author of the study, said, “Integration of tumor characteristics and genomic and epigenomics data revealed distinctive molecular landscapes of TGCT histologic types, and identified previously unappreciated diversity within seminomas.” The study was published on June 12, 2018, in the journal Cell Reports.

Related Links:
University of North Carolina at Chapel Hill

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.