RNA-Based Gene Therapy Developed for Cystic Fibrosis
|
By LabMedica International staff writers Posted on 05 Jul 2018 |

Image: Structure of the CFTR (cystic fibrosis transmembrane conductance regulator) protein. Mutations of the CFTR gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas, and other organs, resulting in cystic fibrosis (Photo courtesy of Wikimedia Commons).
A potential gene therapy approach for treating cystic fibrosis utilizes lipid nanoparticle-delivered chemically modified mRNA.
The promise of gene therapy for the treatment of cystic fibrosis has yet to be fully clinically realized despite years of effort toward correcting the underlying genetic defect in CFTR (cystic fibrosis transmembrane conductance regulator). Mutations in CFTR cause the disease, which is characterized by lung dehydration and mucous buildup that blocks the airway. Nanoparticle delivery of messenger RNA (mRNA) represents a powerful technology for the transfer of genetic material to cells with large, widespread populations, such as airway epithelia.
Investigators at Oregon State University (Portland, USA) and Oregon Health & Science University (Portland, USA) deployed a clinically relevant lipid-based nanoparticle (LNP) for packaging and delivery of large chemically modified CFTR mRNA (cmCFTR) to patient-derived bronchial epithelial cells.
Results published in the June 14, 2018, online edition of the journal Molecular Therapy revealed that this treatment caused in an increase in membrane-localized CFTR and rescue of its primary function as a chloride channel. Furthermore, nasal application of LNP-cmCFTR restored CFTR-mediated chloride secretion to conductive airway epithelia in CFTR knockout mice for at least 14 days. On day three post-transfection, CFTR activity peaked, recovering up to 55% of the net chloride efflux characteristic of healthy mice. This magnitude of response was superior to liposomal CFTR DNA delivery and was comparable with outcomes observed in the currently approved drug ivacaftor.
"It was a platform technology for correcting monogenic disorders and allows the same therapy to be effective for treating all cystic fibrosis patients and these systems can be repeatedly administered to a patient and the effects are reversible if someone needs to stop the therapy for any reason," said senior author Dr. Gaurav Sahay, assistant professor of pharmaceutical sciences at Oregon State University/Oregon Health & Science University.
Related Links:
Oregon State University
Oregon Health & Science University
The promise of gene therapy for the treatment of cystic fibrosis has yet to be fully clinically realized despite years of effort toward correcting the underlying genetic defect in CFTR (cystic fibrosis transmembrane conductance regulator). Mutations in CFTR cause the disease, which is characterized by lung dehydration and mucous buildup that blocks the airway. Nanoparticle delivery of messenger RNA (mRNA) represents a powerful technology for the transfer of genetic material to cells with large, widespread populations, such as airway epithelia.
Investigators at Oregon State University (Portland, USA) and Oregon Health & Science University (Portland, USA) deployed a clinically relevant lipid-based nanoparticle (LNP) for packaging and delivery of large chemically modified CFTR mRNA (cmCFTR) to patient-derived bronchial epithelial cells.
Results published in the June 14, 2018, online edition of the journal Molecular Therapy revealed that this treatment caused in an increase in membrane-localized CFTR and rescue of its primary function as a chloride channel. Furthermore, nasal application of LNP-cmCFTR restored CFTR-mediated chloride secretion to conductive airway epithelia in CFTR knockout mice for at least 14 days. On day three post-transfection, CFTR activity peaked, recovering up to 55% of the net chloride efflux characteristic of healthy mice. This magnitude of response was superior to liposomal CFTR DNA delivery and was comparable with outcomes observed in the currently approved drug ivacaftor.
"It was a platform technology for correcting monogenic disorders and allows the same therapy to be effective for treating all cystic fibrosis patients and these systems can be repeatedly administered to a patient and the effects are reversible if someone needs to stop the therapy for any reason," said senior author Dr. Gaurav Sahay, assistant professor of pharmaceutical sciences at Oregon State University/Oregon Health & Science University.
Related Links:
Oregon State University
Oregon Health & Science University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








