Testing Device Integrates Robotic Phlebotomy with Sample Processing
By LabMedica International staff writers Posted on 20 Jun 2018 |

Image: Desktop systems have been created that can automatically take patient blood samples (robotic phlebotomy) and process them without any human intervention. Making such technology available for hospitals and clinics may have significant consequences, as blood draws are the most common clinical procedures (Photo courtesy of Rutgers University).
Diagnostic blood testing is the most commonly performed clinical procedure in the world and influences the majority of medical decisions made in hospital and laboratory settings. However, manual blood draw success rates are dependent on clinician skill and patient physiology.
Results from such tests are generated almost exclusively in centralized laboratories from large-volume samples using labor-intensive analytical techniques. An end-to-end blood-testing device has been developed that integrates robotic phlebotomy with downstream sample processing. This platform device performs blood draws and provides diagnostic results in a fully automated fashion at the point-of-care.
Biomedical engineers at Rutgers University, Piscataway NJ, USA) created a device that includes an image-guided venipuncture robot, to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. The team first demonstrated a white blood cell assay on the analyzer, using a blood mimicking fluid spiked with fluorescent microbeads, where the area of the packed bead layer is correlated with the bead concentration. Next the scientists performed studies to evaluate the pumping efficiency of the sample-handling module. Finally, studies were conducted on the integrated device from blood draw to analysis, using blood vessel phantoms to assess the accuracy and repeatability of the resulting white blood cell assay.
Martin Yarmush, MD, PhD, a Distinguished Professor of Biomedical Engineering and the senior author of the study said, “This device represents the holy grail in blood testing technology. Integrating miniaturized robotic and microfluidic systems, this technology combines the breadth and accuracy of traditional laboratory testing with the speed and convenience of point-of-care testing.” The study was published on May 30, 2018, in the journal Technology.
Related Links:
Rutgers University
Results from such tests are generated almost exclusively in centralized laboratories from large-volume samples using labor-intensive analytical techniques. An end-to-end blood-testing device has been developed that integrates robotic phlebotomy with downstream sample processing. This platform device performs blood draws and provides diagnostic results in a fully automated fashion at the point-of-care.
Biomedical engineers at Rutgers University, Piscataway NJ, USA) created a device that includes an image-guided venipuncture robot, to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. The team first demonstrated a white blood cell assay on the analyzer, using a blood mimicking fluid spiked with fluorescent microbeads, where the area of the packed bead layer is correlated with the bead concentration. Next the scientists performed studies to evaluate the pumping efficiency of the sample-handling module. Finally, studies were conducted on the integrated device from blood draw to analysis, using blood vessel phantoms to assess the accuracy and repeatability of the resulting white blood cell assay.
Martin Yarmush, MD, PhD, a Distinguished Professor of Biomedical Engineering and the senior author of the study said, “This device represents the holy grail in blood testing technology. Integrating miniaturized robotic and microfluidic systems, this technology combines the breadth and accuracy of traditional laboratory testing with the speed and convenience of point-of-care testing.” The study was published on May 30, 2018, in the journal Technology.
Related Links:
Rutgers University
Latest Hematology News
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
- First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC
- Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results
- Newly Discovered Blood Group System to Help Identify and Treat Rare Patients
- Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke
- Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere
- New Hematology Analyzers Deliver Combined ESR and CBC/DIFF Results in 60 Seconds
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more