RT-PCR Assay Developed to Detect Bloodstream Infections
By LabMedica International staff writers Posted on 11 Jun 2018 |

Image: The LightCycler 96 real-time PCR system (Photo courtesy of Roche Diagnostics).
Rapid detection and identification of a causative pathogen is essential in the treatment of critically ill patients with blood stream infection (BSI), since timely initiation of adequate antibiotic treatment is associated with decreased morbidity, mortality, and possibly reduced healthcare costs.
Conventional culture of inoculated blood samples, termed blood culture (BC), is currently considered the “gold standard” for diagnosing BSI. However, its diagnostic accuracy may be hampered by concomitant antibiotic treatment, low levels of circulating bacteria, and poor sensitivity for slow growing, intracellular, and fastidious microorganisms.
Scientists at the University of Utrecht Medical Center (Utrecht, the Netherlands) and their colleagues collected 5 mL of blood from critically ill patients across multiple years for both blood culture and polymerase chain reaction (PCR) testing. They used 347 blood-culture positive samples, representing up to 50 instances for each pathogen covered by the assay, as well as 200 blood-culture negative samples in order to compare PCR results. After sample collection, the team added a buffer solution and performed centrifugation on the samples, isolating 7 mL to 10 mL of pathogen DNA per sample for PCR testing.
The team designed three novel multiplex assays in order to detect specific pathogens at the species level, as well as an additional broad PCR assay, called molecular Gram stain, to discriminate clinically relevant Gram-negative specimens from Gram-positive specimens. Bacterial pathogens included Escherichia coli, Enterococcus faecium, E. faecalis, Acinetobacter baumannii, and Staphylococcus aureus. In addition, the researchers included probes for Candida species, Aspergillus, and the resistance markers mecA and CTX- M1,9.
The blood stream infection (BSI-PCR) assays were run on a LightCycler system. Bacterial species-specific PCR sensitivities ranged from 65% to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0% to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2,200 species-specific PCRs in 200 culture-negative samples, and ranged from 0% to 6% for generic PCRs.
The authors concluded that that there was no overall link between BSI-PCR sensitivity and time to positivity of blood culture. Overall, they believe that sensitivity of the BSI-PCR is promising for individual bacterial pathogens, but still inadequate for yeasts and generic PCRs. The study was originally published online on April 26, 2018, in the European Journal of Clinical Microbiology and Infectious Diseases.
Related Links:
University of Utrecht Medical Center
Conventional culture of inoculated blood samples, termed blood culture (BC), is currently considered the “gold standard” for diagnosing BSI. However, its diagnostic accuracy may be hampered by concomitant antibiotic treatment, low levels of circulating bacteria, and poor sensitivity for slow growing, intracellular, and fastidious microorganisms.
Scientists at the University of Utrecht Medical Center (Utrecht, the Netherlands) and their colleagues collected 5 mL of blood from critically ill patients across multiple years for both blood culture and polymerase chain reaction (PCR) testing. They used 347 blood-culture positive samples, representing up to 50 instances for each pathogen covered by the assay, as well as 200 blood-culture negative samples in order to compare PCR results. After sample collection, the team added a buffer solution and performed centrifugation on the samples, isolating 7 mL to 10 mL of pathogen DNA per sample for PCR testing.
The team designed three novel multiplex assays in order to detect specific pathogens at the species level, as well as an additional broad PCR assay, called molecular Gram stain, to discriminate clinically relevant Gram-negative specimens from Gram-positive specimens. Bacterial pathogens included Escherichia coli, Enterococcus faecium, E. faecalis, Acinetobacter baumannii, and Staphylococcus aureus. In addition, the researchers included probes for Candida species, Aspergillus, and the resistance markers mecA and CTX- M1,9.
The blood stream infection (BSI-PCR) assays were run on a LightCycler system. Bacterial species-specific PCR sensitivities ranged from 65% to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0% to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2,200 species-specific PCRs in 200 culture-negative samples, and ranged from 0% to 6% for generic PCRs.
The authors concluded that that there was no overall link between BSI-PCR sensitivity and time to positivity of blood culture. Overall, they believe that sensitivity of the BSI-PCR is promising for individual bacterial pathogens, but still inadequate for yeasts and generic PCRs. The study was originally published online on April 26, 2018, in the European Journal of Clinical Microbiology and Infectious Diseases.
Related Links:
University of Utrecht Medical Center
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read more
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more