Specific Biomarker Discovered for Rheumatoid Arthritis
By LabMedica International staff writers Posted on 22 May 2018 |

Image: The ABI 7500 real-time PCR system (Photo courtesy of Thermo Fisher Scientific).
Rheumatoid arthritis (RA) is an autoimmune disorder that occurs when the immune system mistakenly attacks the body's tissues. Unlike the wear-and-tear damage of osteoarthritis, rheumatoid arthritis affects the lining of the joints, causing painful swelling that can eventually result in bone erosion and joint deformity.
Most RA patients are positive for anti-citrullinated protein antibodies (ACPA), and these antibodies are highly specific for RA diagnosis. ACPA recognizes various citrullinated proteins, such as fibrinogen, vimentin and glucose- 6-phosphate isomerase. Citrullinated proteins are proteins that have the amino acid arginine converted into the citrulline, which is not one of the 20 standard amino acids encoded by DNA in the genetic code.
Scientists at the University of Tsukuba (Tsukuba, Japan) collected serum samples from 60 Japanese patients with RA (mean age 52.2 years, range 20–73 years, 80% females) and from 30 healthy subjects (HS); (mean age 49.0 years, range 34–65 years, 80% females). Serum samples were also collected from 17 patients with RA before and 24 weeks after treatment with biologic drugs. A murine model was used to test the methodologies.
The investigators used a variety of techniques to explore the expression and commonality of citrullinated proteins in peptide glucose-6-phosphate isomerase-induced arthritis (pGIA) and patients with RA, and went one step further to investigate its correlation with RA disease activity. These included the measurement of anti-citrullinated peptide (CCP) antibodies in pGIA using the Immunoscan CCPlus test kit; measurement of anti-inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) antibodies with an ELISA test in patients with RA.
Real-time quantitative polymerase chain reaction (RT-qPCR) analysis carried out using an ABI 7500 analyzer. Sera from pGIA mice, control mice, patients with RA, and HS were separated by 2D-PAGE, and gels were stained. The resultant peptides were analyzed with the nanoACQUITY ultrahigh-performance liquid chromatography (UPLC) system.
The scientists found that citrullinated ITIH4 was highly specific to patients with RA, compared with patients with other autoimmune and arthritic diseases or in healthy subjects, indicating a potential role for citrullinated ITIH4 in RA pathogenesis. Notably, its levels were decreased in correlation with the reduction of disease activity score after effective treatment in patients with RA. Moreover, antibody response to citrullinated epitope in ITIH4 was specifically observed in patients with RA.
Isao Matsumoto. MD, PhD, a clinical immunologist and corresponding author of the study, said,” We examined serum citrullinated proteins from pGIA by western blotting, and the sequence was identified by mass spectrometry. With the same methods, serum citrullinated proteins were analyzed in patients with RA, primary Sjögren's syndrome, systemic lupus erythematosus, and osteoarthritis as well as in healthy subjects. Our results suggest that citrullinated ITIH4 might be a novel biomarker to distinguish RA from other rheumatic diseases and for assessing disease activity in patients with RA.” The study was published on April 10, 2018, in the journal Arthritis Research & Therapy.
Related Links:
University of Tsukuba
Most RA patients are positive for anti-citrullinated protein antibodies (ACPA), and these antibodies are highly specific for RA diagnosis. ACPA recognizes various citrullinated proteins, such as fibrinogen, vimentin and glucose- 6-phosphate isomerase. Citrullinated proteins are proteins that have the amino acid arginine converted into the citrulline, which is not one of the 20 standard amino acids encoded by DNA in the genetic code.
Scientists at the University of Tsukuba (Tsukuba, Japan) collected serum samples from 60 Japanese patients with RA (mean age 52.2 years, range 20–73 years, 80% females) and from 30 healthy subjects (HS); (mean age 49.0 years, range 34–65 years, 80% females). Serum samples were also collected from 17 patients with RA before and 24 weeks after treatment with biologic drugs. A murine model was used to test the methodologies.
The investigators used a variety of techniques to explore the expression and commonality of citrullinated proteins in peptide glucose-6-phosphate isomerase-induced arthritis (pGIA) and patients with RA, and went one step further to investigate its correlation with RA disease activity. These included the measurement of anti-citrullinated peptide (CCP) antibodies in pGIA using the Immunoscan CCPlus test kit; measurement of anti-inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) antibodies with an ELISA test in patients with RA.
Real-time quantitative polymerase chain reaction (RT-qPCR) analysis carried out using an ABI 7500 analyzer. Sera from pGIA mice, control mice, patients with RA, and HS were separated by 2D-PAGE, and gels were stained. The resultant peptides were analyzed with the nanoACQUITY ultrahigh-performance liquid chromatography (UPLC) system.
The scientists found that citrullinated ITIH4 was highly specific to patients with RA, compared with patients with other autoimmune and arthritic diseases or in healthy subjects, indicating a potential role for citrullinated ITIH4 in RA pathogenesis. Notably, its levels were decreased in correlation with the reduction of disease activity score after effective treatment in patients with RA. Moreover, antibody response to citrullinated epitope in ITIH4 was specifically observed in patients with RA.
Isao Matsumoto. MD, PhD, a clinical immunologist and corresponding author of the study, said,” We examined serum citrullinated proteins from pGIA by western blotting, and the sequence was identified by mass spectrometry. With the same methods, serum citrullinated proteins were analyzed in patients with RA, primary Sjögren's syndrome, systemic lupus erythematosus, and osteoarthritis as well as in healthy subjects. Our results suggest that citrullinated ITIH4 might be a novel biomarker to distinguish RA from other rheumatic diseases and for assessing disease activity in patients with RA.” The study was published on April 10, 2018, in the journal Arthritis Research & Therapy.
Related Links:
University of Tsukuba
Latest Clinical Chem. News
- AI-Powered Blood Test Accurately Detects Ovarian Cancer
- Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
- Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
- First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more