LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Detection of Legionella Offered for Commercial Water Systems

By LabMedica International staff writers
Posted on 02 Apr 2018
Image: In an outbreak of Legionnaires\' disease, finding the exact source as quickly as possible is essential to preventing further infections. Investigators have now developed a rapid test that identifies Legionella pneumophila in less than one hour. The photograph shows the use of the LegioTyper-chip with the MCR microarray analysis platform (Photo courtesy of Jonas Bemetz, Technical University of Munich).
Image: In an outbreak of Legionnaires\' disease, finding the exact source as quickly as possible is essential to preventing further infections. Investigators have now developed a rapid test that identifies Legionella pneumophila in less than one hour. The photograph shows the use of the LegioTyper-chip with the MCR microarray analysis platform (Photo courtesy of Jonas Bemetz, Technical University of Munich).
A rapid (approximately one hour) DNA microarray-based assay is set to replace classical culture methods for identification of Legionella bacteria in commercial water systems.

The genus Legionella is a pathogenic group of Gram-negative bacteria that includes the species L. pneumophila, the causative agent of legionellosis (all illnesses caused by Legionella) including a pneumonia-type illness called Legionnaires' disease.

Molecular biological detection methods capable of rapidly identifying viable Legionella are important for the control of engineered water systems. The current gold standard based on culture methods takes up to 10 days to show positive results. For this reason, investigators at the Technical University of Munich (Germany) developed a flow-based chemiluminescence (CL) DNA microarray that was able to quantify viable and non-viable Legionella spp. as well as L. pneumophila.

The assay method depends on a measuring chip that was developed in the context of the "LegioTyper" project funded by the German Federal Ministry of Education and Research. This chip not only detected the dangerous pathogen L. pneumophila but also identified which of the approximately 20 subtypes was present.

The foil-based measuring chip used the microarray analysis platform MCR marketed by the biotech company GWK GmbH (Munich, Germany). Using 20 different antibodies, this system provided a complete analysis in less than one hour.

"Compared to previous measurements, the new method not only provides a huge speed advantage," said senior author Dr. Michael Seidel, lecturer in analytical chemistry at the Technical University of Munich, "but is also so cheap that we can use the chip in one-time applications."

Related Links:
Technical University of Munich
GWK

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Pipette
Accumax Smart Series

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more