LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Immune Signature Predicts Asthma Susceptibility

By LabMedica International staff writers
Posted on 27 Feb 2018
Image: The frequency and activity of conventional T cells serves as an early childhood immune signature that predicts the development of asthma later on. The iNKT cells are shown in green, lung vasculature in red and cell nuclei in blue (Photo courtesy of Dr. Catherine Crosby, La Jolla Institute for Allergy and Immunology).
Image: The frequency and activity of conventional T cells serves as an early childhood immune signature that predicts the development of asthma later on. The iNKT cells are shown in green, lung vasculature in red and cell nuclei in blue (Photo courtesy of Dr. Catherine Crosby, La Jolla Institute for Allergy and Immunology).
Asthma is a chronic inflammatory disease driven by the interplay of genetics, environmental factors and a diverse cast of immune cells. A subset of T cells has been identified whose frequency serves as early childhood immune signature that predicts the risk of developing asthma later on.

Consistent with the "hygiene hypothesis," which holds that increased microbial exposure in the first years of life is protective for asthma, the new findings also indicate that the presence of house dust components that stimulate the innate immune system decreases asthma risk.

Scientists at La Jolla Institute for Allergy and Immunology (La Jolla, CA, USA) followed 560 families from four disadvantaged urban areas who are at high risk for asthma to uncover potential risk factors that contribute to increased asthma rate in children growing up in impoverished neighborhoods. The team analyzed the frequency of different types of immune cells in blood collected from 110 one year-old study participants, the presence of immune-stimulatory components in the subjects' house dust and asked whether any of the factors correlated with an increase of asthma at age seven.

The team used peripheral blood from the participants to determine determined whether invariant natural killer T-cells (iNKT) or mucosal-associated invariant T-cells (MAIT) cell frequency at one year is correlated with the cytokine polarization of mainstream CD4+ T cells and/or the development of asthma by age seven years. Unlike conventional T cells, which belong to the adaptive arm of the immune response and take a few days before they are fully trained on a single, specific protein fragment or peptide antigen, MAIT and iNKT cells recognize molecular components common to many microbes. In addition dust samples from 300 houses were tested for iNKT cell antigenic activity.

The investigators showed that a higher MAIT cell frequency at one year of age was associated with a decreased risk of asthma by age seven years. The frequency of MAIT cells was associated with increased production of interferon-gamma (IFN-γ) by activated CD4+ T cells from the cohort. The iNKT cell antigenic activity in bedroom dust samples was associated with higher endotoxin concentration and also with reduced risk of asthma.

Mitchell Kronenberg, PhD, president and chief scientific officer of La Jolla Institute and senior author of the study, said, “We found what I would consider very strong biomarkers for those children who are most likely to develop asthma as they get older. Children who, at the age of one, had a higher frequency of so called MAIT cells appear to be less likely to develop asthma by the age of seven.” The study was published on February 5, 2018, in the Journal of Immunology.

Related Links:
La Jolla Institute for Allergy and Immunology

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more