We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Protein Nanoparticles Empower Potential Universal Flu Vaccine

By LabMedica International staff writers
Posted on 05 Feb 2018
Print article
Image: A colorized negative stained transmission electron micrograph (TEM) depicting flu virus ultrastructural morphology (Photo courtesy of the CDC).
Image: A colorized negative stained transmission electron micrograph (TEM) depicting flu virus ultrastructural morphology (Photo courtesy of the CDC).
A potential "universal" flu vaccine based on double-layered protein nanoparticles loaded with the invariable portion of viral hemagglutinin produced long-lasting immunity and fully protected mice against challenge with various strains of influenza A viruses.
 
Investigators at Georgia State University (Atlanta, USA) fabricated layered nanoparticles by inserting tetrameric M2e into protein nanoparticle cores and coating these cores with crosslinked headless hemagglutinin stalk proteins. M2e (ectodomain of influenza matrix protein 2) is highly conserved in both human and avian influenza A viruses. The low immunogenicity against natural M2e can be overcome by fusing M2e to an appropriate carrier particle. Protein carriers with representative headless hemagglutinin of two different phylogenetic groups were constructed and purified.
 
The investigators reported in the January 24, 2018, online edition of the journal Nature Communications that vaccinations with the resulting protein nanoparticles in mice induced robust long-lasting immunity, fully protecting the mice against challenges by influenza A viruses of the same group or both groups.
 
"What we wanted to do is to induce responses to this stalk part of the influenza surface glycoprotein, not the head part," said senior author Dr. Bao-Zhong Wang, associate professor of biomedical sciences at Georgia State University. "This way you are protected against different viruses because all influenza viruses share this stalk domain. However, this stalk domain itself is not stable, so we used a very special way to make this vaccine construct with the stalk domain and had success. We assembled this stalk domain into a protein nanoparticle as a vaccine. Once inside, the nanoparticle can protect this antigenic protein so it will not be degraded. Our immune cells have a good ability to take in this nanoparticle, so this nanoparticle is much, much better than a soluble protein to induce immune responses. We are developing a universal influenza vaccine that would not need to change the vaccine type every year because it is universal and can protect against any influenza virus."
 
In addition to their role in a universal flu vaccine, the physiologically activated disassembly of the protein nanoparticles after uptake into cells implies a wide potential for protein drug delivery and controlled release.
 
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Nutating Mixer
Enduro MiniMix
New
Malondialdehyde HPLC Test
Malondialdehyde in Serum/Plasma – HPLC

Print article

Channels

Clinical Chemistry

view channel
Image: Professor Nicole Strittmatter (left) and first author Wei Chen stand in front of the mass spectrometer with a tissue sample (Photo courtesy of Robert Reich/TUM)

Mass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication

Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more

Molecular Diagnostics

view channel
Image: Health Canada has approved SPINEstat, a first-in-class diagnostic blood test for axSpA, as a Class II medical device (Photo courtesy of Augurex)

First-in-Class Diagnostic Blood Test Detects Axial Spondyloarthritis

Axial spondyloarthritis (axSpA) is a chronic inflammatory autoimmune condition that typically affects individuals during their most productive years, with symptoms often emerging before the age of 45.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more