We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Gene Therapy Based on Modified Version of CRISPR/Cas9 Tool

By LabMedica International staff writers
Posted on 21 Dec 2017
Print article
Image: An advanced in vivo Cas9-based epigenetic gene activation system enhances skeletal muscle mass (top) and fiber size growth (bottom) in a treated mouse (right) compared with an independent control (left). The fluorescent microscopy images at bottom show purple staining of the laminin glycoprotein in tibialis anterior muscle fibers (Photo courtesy of the Salk Institute for Biological Research).
Image: An advanced in vivo Cas9-based epigenetic gene activation system enhances skeletal muscle mass (top) and fiber size growth (bottom) in a treated mouse (right) compared with an independent control (left). The fluorescent microscopy images at bottom show purple staining of the laminin glycoprotein in tibialis anterior muscle fibers (Photo courtesy of the Salk Institute for Biological Research).
A modified form of the CRISPR/Cas9 gene-editing tool does not cause "double-strand breaks" (DSBs) in the DNA, yet it retains the ability to target and activate specific sites in the genome.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs.

Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (gRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

In a paper published in the December 7, 2017, online edition of the journal Cell, investigators at the Salk Institute for Biological Research (La Jolla, CA, USA) used a modified version of CRISPR/Cas9. This version is based on a catalytically inactive form of Cas9 (dCas9), which can still target specific sites in the genome, but no longer induces DSBs that cut DNA. CRISPR/dCas9 associates with transcriptional activation domains, which are molecular switches that activate targeted genes.

Delivery of the CRISPR/dCas9 complex required development of a new methodology, as it was too large to fit into the commonly used adeno-associated virus (AAV) transport system. Therefore, the investigators separated the editing tool into its two primary components by generating a dual-AAV system based on co-injection of AAV-dCas9 with a separate AAV-gRNA.

The investigators used this technique to treat mouse models of diabetes, muscular dystrophy, and acute kidney disease. Results demonstrated that CRISPR/dCas9-mediated target gene activation could be achieved in vivo, leading to measurable phenotypes and amelioration of disease symptoms.

"Although many studies have demonstrated that CRISPR/Cas9 can be applied as a powerful tool for gene therapy, there are growing concerns regarding unwanted mutations generated by the double-strand breaks through this technology," said senior author Dr. Juan Carlos Izpisua Belmonte, a professor in the gene expression laboratory at the Salk Institute for Biological Research. "We were able to get around that concern."

Related Links:
Salk Institute for Biological Research

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Automatic Nucleic Acid Extractor
GeneRotex 24

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more