LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Harvesting Method Produces Superior Transplantation Stem Cells

By LabMedica International staff writers
Posted on 19 Dec 2017
Image: A scanning electron micrograph (SEM) of induced stem cells (Photo courtesy of University of New South Wales).
Image: A scanning electron micrograph (SEM) of induced stem cells (Photo courtesy of University of New South Wales).
Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes.

Currently, the most common way of harvesting hematopoietic (blood system) stem cells requires donors to receive daily injections of a drug called granulocyte colony-stimulating factor (G-CSF), which induces stem cells to pass from the bone marrow into the circulation. A new method of harvesting stem cells for bone marrow transplantation may make the donation process more convenient and less unpleasant for donors while providing cells that are superior to those acquired by current protocols.

A team of scientists collaborating with those at Massachusetts General Hospital (Boston, MA, USA) developed a rapid stem cell mobilization regimen utilizing a unique C-X-C chemokine receptor type 2 (CXCR2) agonist, growth regulated oncogene-beta (GROβ), and the CXCR4 antagonist Plerixafor (AMD3100). A single injection of both agents resulted in stem cell mobilization peaking within 15 minutes that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF).

In addition to determining the mechanisms by which combined administration of GROβ and AMD3100 produced enough stem cells so quickly, the team found that transplantation with these cells led to faster reconstitution of bone marrow and recovery of immune cell populations in mouse models. The stem cells produced by this procedure also show patterns of gene expression similar to those of fetal hematopoietic stem cells (HSCs), which are located in the liver, rather than the bone marrow. The team also determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced matrix metallopeptidase 9 (MMP-9) release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity.

Jonathan Hoggatt, PhD, a professor and lead author of the study said, “This is an exciting time in bone marrow transplantation, as the number of diseases that can be treated or possibly even cured is increasing. With new gene therapy strategies being developed for diseases like sickle cell anemia, beta thalassemia and severe combined immunodeficiency, having enough high-quality, gene-altered cells can be a key bottleneck. Our ability to acquire highly engraftable HSCs with the GROβ and AMD3100 combination should significantly improve and expand the availability of those treatments.” The study was published on December 7, 2017, in the journal Cell.

Related Links:
Massachusetts General Hospital

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more