Two Critical Genes Identified for Soft Tissue Infections
By LabMedica International staff writers Posted on 04 Oct 2017 |

Image: Tissue staining shows Group A Streptococcus soft tissue infection at the cellular level. (L-R) Uninfected mouse tissue and mouse tissue 48 hours after infection. The dense dots indicate immune system cells that swarmed in to attempt to control the infection. The densest purple staining toward the bottom is necrotic tissue surrounding bacteria (Photo courtesy of Joshua Leiberman, University of Maryland).
A team of molecular microbiologists has identified two genes that are critical for infection of soft tissue and dissemination into the bloodstream by pathogenic Group A Streptococcus bacteria.
The World Health Organization ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues.
Investigators at the University of Maryland (College Park, USA) used transposon-sequencing (Tn-seq) to define the genetic requirements for in vivo fitness of GAS in subepithelial tissue.
Transposon sequencing begins by transforming bacterial populations with transposable elements using bacteriophages. The technique requires the creation of a transposon insertion library, which will contain a group of mutants that collectively have transposon insertions in all non-essential genes. The library is grown under the condition that is of interest. Mutants with transposons inserted in genes required for growth under the test condition will diminish in frequency from the population. To identify genes being lost, sequences encompassing the transposon ends are amplified by polymerase chain reaction (PCR) and sequenced by massive parallel sequencing (MPS) to determine the location and abundance of each insertion mutation. The importance of each gene for growth under the test condition is determined by comparing the abundance of each mutant before and after growth under the condition being examined.
The investigators reported in the August 23, 2017, online edition of the journal PLOS Pathogens that they had identified 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during soft tissue infection and dissemination into the bloodstream. The investigators hypothesized that that these scfAB genes play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments.
"Invasion under the skin, or subcutaneously, is not the norm for Group A Streptococcus bacteria; it is actually very rare," said senior author Dr. Kevin McIver, professor of cell biology and molecular genetics at the University of Maryland. "We hypothesized that there must be genes in the bacteria important for invading soft tissues and surviving under the skin. And we tested that theory by using transposons to make thousands of different individual mutants that we used to infect a subcutaneous environment in mice. Transposon sequencing can be used to probe how bacteria infect humans in any environment you can think of. Like Group A Streptococcus, many pathogenic bacteria have completely sequenced genomes, but we do not know what most of the genes are doing. We are excited to have a method to interrogate all that unknown genetic material to better understand human infections."
Related Links:
University of Maryland
The World Health Organization ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues.
Investigators at the University of Maryland (College Park, USA) used transposon-sequencing (Tn-seq) to define the genetic requirements for in vivo fitness of GAS in subepithelial tissue.
Transposon sequencing begins by transforming bacterial populations with transposable elements using bacteriophages. The technique requires the creation of a transposon insertion library, which will contain a group of mutants that collectively have transposon insertions in all non-essential genes. The library is grown under the condition that is of interest. Mutants with transposons inserted in genes required for growth under the test condition will diminish in frequency from the population. To identify genes being lost, sequences encompassing the transposon ends are amplified by polymerase chain reaction (PCR) and sequenced by massive parallel sequencing (MPS) to determine the location and abundance of each insertion mutation. The importance of each gene for growth under the test condition is determined by comparing the abundance of each mutant before and after growth under the condition being examined.
The investigators reported in the August 23, 2017, online edition of the journal PLOS Pathogens that they had identified 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during soft tissue infection and dissemination into the bloodstream. The investigators hypothesized that that these scfAB genes play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments.
"Invasion under the skin, or subcutaneously, is not the norm for Group A Streptococcus bacteria; it is actually very rare," said senior author Dr. Kevin McIver, professor of cell biology and molecular genetics at the University of Maryland. "We hypothesized that there must be genes in the bacteria important for invading soft tissues and surviving under the skin. And we tested that theory by using transposons to make thousands of different individual mutants that we used to infect a subcutaneous environment in mice. Transposon sequencing can be used to probe how bacteria infect humans in any environment you can think of. Like Group A Streptococcus, many pathogenic bacteria have completely sequenced genomes, but we do not know what most of the genes are doing. We are excited to have a method to interrogate all that unknown genetic material to better understand human infections."
Related Links:
University of Maryland
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more