We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Staphylococcus Aureus Avoids Inducing Immune Memory in Model

By LabMedica International staff writers
Posted on 03 Oct 2017
Print article
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A team of medical microbiologists has identified the mechanism that prevents the body's immune system from developing an effective protective response to repeated Staphylococcus aureus infections.

Investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) sought to clarify why humans do not usually develop effective immunity to Staphylococcus aureus reinfection.

Toward this end, the investigators worked with a mouse model that mimicked human S. aureus infection. They reported in the September 21, 2017, online edition of the journal Cell Host & Microbe that infection by S. aureus caused the immune system to increase production of anti-inflammatory cytokines, specifically interleukin-10 (IL-10), while impairing the anti-pathogenic response from protective Th17 (T helper) cells.

At the mechanistic level they found that O-acetylation of peptidoglycan, a mechanism utilized by S. aureus to block bacterial cell wall breakdown, limited the induction of pro-inflammatory signals required for optimal Th17 polarization. Thus, the bacterial cell wall remained intact after infecting the host, and molecules from the pathogen did not escape to interact with the immune system and trigger the development of robust protective immune memory.

IL-10 deficiency in mice restored protective immunity to S. aureus infection. Using a staphylococcal peptidoglycan O-acetyltransferase mutant as adjuvant reduced IL-10, increased IL-1beta (an important mediator of the inflammatory response), and promoted development of IL-17-dependent, Th cell-transferable protective immunity.

"Essentially, staph tricks the body's T-cells, which are white blood cells that fight infection, and prevents them from mounting an effective defense," said contributing author Dr. Gislaine Martins, assistant professor of biomedical science and medicine at Cedars-Sinai Medical Center. "The study explains why our immune system is fooled by staph. Staph evolved to have this enzyme that makes this modification in its cell wall. This modification protects the wall from degradation and therefore from being properly detected by the immune system, which will not remember the bacteria the next time the body is infected."

Related Links:
Cedars-Sinai Medical Center

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
Amoebiasis Test
ELI.H.A Amoeba

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more