We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Zebra Fish Model Yields Clues to Neuroblastoma Growth

By LabMedica International staff writers
Posted on 15 Sep 2017
Print article
Image: New research clarifies the relationship between two genes that fuel the aggressive spread of neuroblastomas (Photo courtesy of the Mayo Clinic).
Image: New research clarifies the relationship between two genes that fuel the aggressive spread of neuroblastomas (Photo courtesy of the Mayo Clinic).
A genome-wide association study (GWAS) conducted in a zebra fish model system identified LMO1, which encodes a LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma.

Neuroblastoma is a cancer that most commonly affects children age five years or younger, though it may rarely occur in older children. The cancer develops from immature nerve cells found in several areas of the body but most commonly arises in and around the adrenal glands, which have similar origins to nerve cells.

Investigators at the Mayo Clinic (Rochester, MN, USA) studied the mechanism used by neuroblastoma to grow and spread. They reported in the August 31, 2017, online edition of the journal Cancer Cell that genetic analyses using zebra fish demonstrated that LMO1 cooperated with the MYCN gene to accelerate tumor onset and progression.

In zebra fish expressing both MYCN and LMO1, the investigators observed tumor development in 80% of the offspring by 24 weeks of age. In offspring expressing only the MYCN gene, tumors developed in only 20 to 30% during the same time period.

The transgenic expression of LMO1 promoted neuroblastoma dissemination and distant metastasis, which was linked to cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction.

"This is the first evidence in an animal model that high levels of LMO1 expression promote metastasis of MYCN-induced neuroblastoma," said first author Dr. Shizhen Zhu, a biomedical researcher at the Mayo Clinic. "Increased expression of the LMO1 gene is associated with aggressive, high-risk neuroblastomas. Our genetic analyses using zebra fish demonstrates for the first time that LMO1 cooperates with the MYCN gene to accelerate tumor onset and increase tumor penetrance. Our zebra fish model of neuroblastoma with transgenic expression of LMO1 and MYCN should provide a valuable platform for evaluating the effects of drugs to prevent or inhibit neuroblastoma metastasis going forward."

Related Links:
Mayo Clinic

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more