We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle Reagent Simplifies Gene Expression Programming

By LabMedica International staff writers
Posted on 13 Sep 2017
Print article
Image: A diagram of a scaffold loaded with CAR T-cells and “microspheres” containing nutrients to help the cells multiply and then leave the scaffold to go attack cancer cells (Photo courtesy of the Fred Hutchinson Cancer Research Center).
Image: A diagram of a scaffold loaded with CAR T-cells and “microspheres” containing nutrients to help the cells multiply and then leave the scaffold to go attack cancer cells (Photo courtesy of the Fred Hutchinson Cancer Research Center).
Novel nanoparticle carriers were used to deliver mRNA directly to specific cell types (T-cells of the immune system and blood stem cells) in order to induce short-term changes in gene expression that could be harnessed to treat diseases ranging from cancer to diabetes.

Therapies based on immune cells have been applied for a variety of diseases. However, the viral and electroporation methods used to create such cytoreagents are complex and expensive. Therefore, investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) developed targeted mRNA nanocarriers that were simply mixed with cells to reprogram them via transient gene expression. The nanoparticles were loaded with a gene-editing tool that snipped out natural T-cell receptors, and then was paired with genes encoding a "chimeric antigen receptor" or CAR, a synthetic molecule designed to attack cancer cells. Ultimately, the nanoparticles were removed from the body like other cell waste.

This approach was called "hit-and-run" genetic programming, since the transient effect of mRNA did not change the DNA, but it was enough to make a permanent impact on the cells' therapeutic potential.

In the August 30, 2017, online edition of the journal Nature Communications the investigators described three examples that they had used to establish that the approach was simple and generalizable. First, they demonstrated that nanocarriers delivering mRNA encoding a genome-editing agent could efficiently knockout selected genes in anti-cancer T-cells. Second, they imprinted a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encoded a key transcription factor of memory formation. Third, they showed how mRNA nanocarriers could program hematopoietic stem cells with improved self-renewal properties.

"Our goal is to streamline the manufacture of cell-based therapies," said senior author Dr. Matthias Stephan, a biomaterials expert at the Fred Hutchinson Cancer Research Center. "In this study, we created a product where you just add it to cultured cells and that is it -- no additional manufacturing steps. We developed a nanocarrier that binds and condenses synthetic mRNA and protects it from degradation. Just add water to our freeze-dried product. If you know from the scientific literature that a signaling pathway works in synergy, you could co-deliver mRNA in a single nanoparticle. Every cell that takes up the nanoparticle can express both."

Related Links:
Fred Hutchinson Cancer Research Center

New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Ultrasonic Cleaner
UC 300 Series
New
TRAb Immunoassay
Chorus TRAb

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: Karius Focus BAL is designed to quickly identify the etiology of lung infections and improve diagnostic yield over standard of care testing (Photo courtesy of Karius)

Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections

Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more