New Biomarkers Provide Diagnostic Tool for AD
By LabMedica International staff writers Posted on 09 Aug 2017 |

Image: The CytoViva hyperspectral imaging system (Photo courtesy of CytoViva).
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that results in the gradual deterioration of specific brain regions that hinders the person’s ability to think, recall memories, learn, and perform daily tasks.
Currently, AD is diagnosed using the “evaluate and eliminate” approach. With this strategy, patient history, physical exams, laboratory tests, imaging scans, and neurophysiological assessments are examined by doctors as a means to diagnose AD and determine its progression.
Scientists at Ohio State University (Columbus, OH, USA) and their colleagues analyzed 34 cerebrospinal fluid (CSF) samples from 24 patients with AD and from 10 healthy individuals serving as controls. They analyzed 30 serum samples from 22 patients with AD and from eight healthy individuals serving as controls. The processed CSF samples were combined with rabbit-derived primary antibodies anti-Aβ(1–42) antibody) and anti-tau) and goat-derived anti-rabbit secondary antibody in immunofluorescence assays.
A CSF sample of 10 μL was dried on a slide glass surface for atomic force microscopy (AFM) nanomechanics characterization. Hyperspectral microscope imaging was used for particle visualization and analysis and using the system, images of micro-/nanoscale structures and micro-/nanoparticles were captured. Coated with gold and anti-Aβ(1–42) antibody, AFM tips were functionalized to specifically detect the Aβ-embedded proteins inside human serum. Serum or anti-Aβ(1–42) antibody was used to coat the substrates, respectively.
The scientists showed that showed that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of “physical biomarkers”. Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, they demonstrated an approach to impartially diagnose AD and predict its progression.
Mingjun Zhang, PhD, DSc, a professor of Biomechanical Engineering, and lead investigator of the study said, “With a tool like this you may predict how fast this disease will go, and currently we can't do that, we just know everyone is different. Looking at multiple indicators of the disease all at once increases the reliability of the diagnosis and prognosis.” The study was published on July 28, 2017, in the journal Science Advances.
Related Links:
Ohio State University
Currently, AD is diagnosed using the “evaluate and eliminate” approach. With this strategy, patient history, physical exams, laboratory tests, imaging scans, and neurophysiological assessments are examined by doctors as a means to diagnose AD and determine its progression.
Scientists at Ohio State University (Columbus, OH, USA) and their colleagues analyzed 34 cerebrospinal fluid (CSF) samples from 24 patients with AD and from 10 healthy individuals serving as controls. They analyzed 30 serum samples from 22 patients with AD and from eight healthy individuals serving as controls. The processed CSF samples were combined with rabbit-derived primary antibodies anti-Aβ(1–42) antibody) and anti-tau) and goat-derived anti-rabbit secondary antibody in immunofluorescence assays.
A CSF sample of 10 μL was dried on a slide glass surface for atomic force microscopy (AFM) nanomechanics characterization. Hyperspectral microscope imaging was used for particle visualization and analysis and using the system, images of micro-/nanoscale structures and micro-/nanoparticles were captured. Coated with gold and anti-Aβ(1–42) antibody, AFM tips were functionalized to specifically detect the Aβ-embedded proteins inside human serum. Serum or anti-Aβ(1–42) antibody was used to coat the substrates, respectively.
The scientists showed that showed that nanoscale physical properties of protein aggregates from the cerebral spinal fluid and blood of patients are altered during AD pathogenesis and that these properties can be used as a new class of “physical biomarkers”. Using a computational algorithm, developed to integrate these biomarkers and cognitive assessments, they demonstrated an approach to impartially diagnose AD and predict its progression.
Mingjun Zhang, PhD, DSc, a professor of Biomechanical Engineering, and lead investigator of the study said, “With a tool like this you may predict how fast this disease will go, and currently we can't do that, we just know everyone is different. Looking at multiple indicators of the disease all at once increases the reliability of the diagnosis and prognosis.” The study was published on July 28, 2017, in the journal Science Advances.
Related Links:
Ohio State University
Latest Technology News
- Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
- Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
- Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
- Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
- Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
- Smartphones Could Diagnose Diseases Using Infrared Scans
- Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
- 3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Oral Swab Test to Increase Chances of Pregnancy in IVF
Approximately 15% of couples of reproductive age experience involuntary childlessness. A significant reason for this is the growing trend of delaying family planning, a global shift that is expected to... Read more
Microbial Cell-Free DNA Test Accurately Identifies Pathogens Causing Pneumonia and Other Lung Infections
Bronchoalveolar lavage (BAL) is a commonly used procedure for diagnosing lung infections, especially in immunocompromised patients. However, standard tests often fail to pinpoint the exact pathogen, leading... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read morePathology
view channel
Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
Cardiovascular disease is responsible for a third of all deaths worldwide, and chest pain is the second most common reason for emergency department (ED) visits. With EDs often being some of the busiest... Read more
AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
Detecting brain cancers remains extremely challenging, with many patients only receiving a diagnosis at later stages after symptoms like headaches, seizures, or cognitive issues appear. Late-stage diagnoses... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more