LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mutational Profile of Metastatic Breast Cancers Analyzed

By LabMedica International staff writers
Posted on 18 Jan 2017
Image: The NextSeq 500 Series desktop sequencing system (Photo courtesy of Illumina).
Image: The NextSeq 500 Series desktop sequencing system (Photo courtesy of Illumina).
Breast cancer often results in poor outcomes after it has metastasized to distant organs, but, while primary breast tumors have been extensively characterized at the molecular level, metastatic lesions are poorly understood.

Recent data from different types of cancer have suggested that there is a strong heterogeneity between primary tumors and metastases, and that genomic profiles of metastases could dramatically differ from primary tumors.

A large team of French scientists led by those at the Centre Léon Bérard characterized the mutational landscape of metastatic breast cancer by performing and analyzing whole-exome sequencing of a large collection of metastatic breast tumors and corresponding blood samples. The authors generated a significant collection of whole-exome sequencing data from the DNA of breast cancer metastases and from each patient’s corresponding unmutated DNA in order to identify mutations and gene copy number alterations specific to the tumors.

Genomic DNA was captured using Agilent in-solution enrichment methodology followed by 75-base paired-end massively parallel sequencing on HiSeq2500, HiSeq4000, or NextSeq500. The bioinformatics analyses identified recurrently mutated genes in metastatic tumors and revealed the genes specifically involved in metastatic disease by comparing their mutational frequency to those of primary breast tumors. The study allowed identification of the affected genes and of mutational signatures that were more prevalent in metastatic as compared with primary tumors and that may be involved in the resistance to therapies.

The identification of mutational and copy number alterations specifically involved in breast cancer metastasis demonstrated that tumors evolve under the pressure of therapy. Characterization of mutations and copy number alterations in metastatic lesions in addition to primary tumors should help to tailor treatment for patients, with the potential for improved clinical outcomes. The authors concluded that their study demonstrated that profiling metastatic cancer can be a major step in defining optimal treatments for patients, as new mutation events and processes may arise during cancer treatment. The study was published on December 27, 2016, in the journal Public Library of Science Medicine.

Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more