We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Images Identified for Breast Cancer Cell Histopathology

By LabMedica International staff writers
Posted on 11 Nov 2016
Print article
Image: Photomicrographs of a) Lymphocytes, b) Normal epithelial nuclei, c) Cancerous epithelial nuclei, and d) Mitotic nuclei (Photo courtesy of Trinity College Dublin).
Image: Photomicrographs of a) Lymphocytes, b) Normal epithelial nuclei, c) Cancerous epithelial nuclei, and d) Mitotic nuclei (Photo courtesy of Trinity College Dublin).
Breast cancer is the most prevalent form of cancer for women worldwide. Current breast cancer clinical practice and treatment mainly relies on the evaluation of the disease's prognosis using the Bloom-Richardson grading system.

The advent of digital pathology and fast digital slide scanners has opened the possibility of automating the prognosis by applying image-processing methods and while this undoubtedly represents progress, image-processing methods have struggled to analyze high-grade breast cancer cells as these cells are often clustered together and have vague boundaries, which make successful detection extremely challenging.

An international team comprising engineers, mathematicians and doctors led by those at Trinity College Dublin (Ireland) have has applied a technique used for detecting damage in underwater marine structures to identify cancerous cells in breast cancer histopathology images. The team has proposed a novel segmentation algorithm for detecting individual nuclei from hematoxylin and eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF).

The method was tested on both whole-slide images and frames of breast cancer histopathology images. The investigators considered the likelihood of every point in a histopathology image either being near a cell center or a cell boundary and using a belief propagation algorithm, the most suitable cell boundaries were then traced out. Test results show that the proposed method is suitable for nuclei segmentation in high-grade breast cancer histopathology images containing scenes depicting grade 3 nuclear pleomorphism (cancerous nuclei with marked variations from normal nuclei) even though these are quite challenging for traditional segmentation methods to detect.

Maqlin Paramanandam, PhD, the lead author of the study said, “The potential for this technology is very exciting and we are delighted that this international and inter-disciplinary team has worked so well at tackling a real bottle-neck in automating the diagnosis of breast cancer using histopathology images.” The study was published on September 20, 2016, in the journal Public Library of Science ONE.

Related Links:
Trinity College Dublin

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.