We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cell Surface Glycoprotein Critical for Acute Myeloid Leukemia

By LabMedica International staff writers
Posted on 08 Nov 2016
Image: Leukemia cells (green) interact with blood vessels (blue) via the molecule CD98 (Photo courtesy of the University of California, San Diego).
Image: Leukemia cells (green) interact with blood vessels (blue) via the molecule CD98 (Photo courtesy of the University of California, San Diego).
The cell surface glycoprotein CD98 was identified as a key factor required for growth and spread of acute myeloid leukemia (AML).

AML is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. The symptoms of AML are caused by replacement of normal bone marrow with leukemic cells, which causes a drop in red blood cells, platelets, and normal white blood cells. Symptoms include fatigue, shortness of breath, easy bruising and bleeding, and increased risk of infection. AML progresses rapidly and is typically fatal within weeks or months if left untreated.

CD98 has been shown to control how cells adhere and to play a role in the proliferation and activation of certain immune cells. CD98 levels are also known to be elevated in some solid tumors, and linked to poor prognosis. To better understand the role of CD98 in AML, investigators at the University of California, San Diego (USA) genetically engineered several lines of mice that lacked the gene for production of the molecule.

They reported in the October 27, 2016, online edition of the journal Cancer Cell that CD98 promoted AML propagation and lethality by driving engagement of leukemia cells with their microenvironment and maintaining leukemic stem cells. In addition, delivery of the humanized anti-CD98 antibody IGN523 blocked growth of patient-derived AML, highlighting the importance of this pathway in human disease.

"This study suggests that human AML cannot get established without CD98, and that blocking the molecule with anti-CD98 antibodies could be beneficial for the treatment of AML in both adults and children," said senior author Dr. Tannishtha Reya, professor of pharmacology at the University of California, San Diego.

"To improve therapeutic strategies for this disease, we need to look not just at the cancer cells themselves, but also at their interactions with surrounding cells, tissues, molecules, and blood vessels in the body," said Dr. Reya. "In this study, we identified CD98 as a critical molecule driving AML growth. We showed that blocking CD98 can effectively reduce leukemia burden and improve survival by preventing cancer cells from receiving support from the surrounding environment."

Related Links:
University of California, San Diego

Gold Member
Collection and Transport System
PurSafe Plus®
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
GLOBE SCIENTIFIC, LLC