Candidate Drug Kills CRCs with Mutated Tumor Suppressor Gene
|
By LabMedica International staff writers Posted on 04 Nov 2016 |

Image: The protein produced by the adenomatous polyposis coli (APC) tumor suppressor gene (Photo courtesy of Wikimedia Commons).
A candidate small molecule drug for treatment of colorectal cancer acts by blocking cholesterol biosynthesis in a subset of tumor cells that carry a mutated version of a gene that normally suppresses tumor formation.
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC) - they are found in more than 80% of colon tumors - and more than 90% of those mutations generate stable truncated gene products.
To identify candidate drugs capable of killing CRC cells with mutated APC, investigators at the University of Texas Southwest Medical Center (Dallas, USA) screened more than 200,000 compounds against a panel of normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein.
They reported in the October 19, 2016, online edition of the journal Science Translational Medicine that a small molecule, TASIN-1 (truncated APC selective inhibitor-1), specifically killed cells with APC truncations but spared normal and cancer cells with wild-type APC. TASIN-1 exerted its cytotoxic effects through inhibition of cholesterol biosynthesis.
In vivo administration of TASIN-1 inhibited tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity.
"Even though such mutations are common in colorectal cancer, there are currently not any therapeutics that directly target these types of mutations, so this represents fresh avenues to approach," said senior author Dr. Jerry W. Shay, professor of cell biology at the University of Texas Southwest Medical Center. "Our latest finding confirms that targeting TASINs is a viable approach. Considering the high prevalence of APC mutations in colon cancer patients, targeting truncated APC could be an effective therapeutic strategy for prevention and intervention of colorectal cancer and could potentially be used as a marker for stratifying patients in future personalized medicine clinical trials."
Related Links:
University of Texas Southwest Medical Center
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC) - they are found in more than 80% of colon tumors - and more than 90% of those mutations generate stable truncated gene products.
To identify candidate drugs capable of killing CRC cells with mutated APC, investigators at the University of Texas Southwest Medical Center (Dallas, USA) screened more than 200,000 compounds against a panel of normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein.
They reported in the October 19, 2016, online edition of the journal Science Translational Medicine that a small molecule, TASIN-1 (truncated APC selective inhibitor-1), specifically killed cells with APC truncations but spared normal and cancer cells with wild-type APC. TASIN-1 exerted its cytotoxic effects through inhibition of cholesterol biosynthesis.
In vivo administration of TASIN-1 inhibited tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity.
"Even though such mutations are common in colorectal cancer, there are currently not any therapeutics that directly target these types of mutations, so this represents fresh avenues to approach," said senior author Dr. Jerry W. Shay, professor of cell biology at the University of Texas Southwest Medical Center. "Our latest finding confirms that targeting TASINs is a viable approach. Considering the high prevalence of APC mutations in colon cancer patients, targeting truncated APC could be an effective therapeutic strategy for prevention and intervention of colorectal cancer and could potentially be used as a marker for stratifying patients in future personalized medicine clinical trials."
Related Links:
University of Texas Southwest Medical Center
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read more
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read moreMolecular Diagnostics
view channel
Group A Strep Molecular Test Delivers Definitive Results at POC in 15 Minutes
Strep throat is a bacterial infection caused by Group A Streptococcus (GAS). It is a leading bacterial cause of acute pharyngitis, particularly in children and adolescents, and one of the most common reasons... Read more
Rapid Molecular Test Identifies Sepsis Patients Most Likely to Have Positive Blood Cultures
Sepsis is caused by a patient’s overwhelming immune response to an infection. If undetected or left untreated, sepsis leads to tissue damage, organ failure, permanent disability, and often death.... Read moreHematology
view channel
Rapid Cartridge-Based Test Aims to Expand Access to Hemoglobin Disorder Diagnosis
Sickle cell disease and beta thalassemia are hemoglobin disorders that often require referral to specialized laboratories for definitive diagnosis, delaying results for patients and clinicians.... Read more
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread.... Read more
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read morePathology
view channel
AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear
Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more
Research Consortium Harnesses AI and Spatial Biology to Advance Cancer Discovery
AI has the potential to transform cancer care, yet progress remains constrained by fragmented, inaccessible data that hinder advances in early diagnosis and precision therapy. Unlocking patterns missed... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio
QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more







