We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Candidate Drug Kills CRCs with Mutated Tumor Suppressor Gene

By LabMedica International staff writers
Posted on 04 Nov 2016
Image: The protein produced by the adenomatous polyposis coli (APC) tumor suppressor gene (Photo courtesy of Wikimedia Commons).
Image: The protein produced by the adenomatous polyposis coli (APC) tumor suppressor gene (Photo courtesy of Wikimedia Commons).
A candidate small molecule drug for treatment of colorectal cancer acts by blocking cholesterol biosynthesis in a subset of tumor cells that carry a mutated version of a gene that normally suppresses tumor formation.

Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC) - they are found in more than 80% of colon tumors - and more than 90% of those mutations generate stable truncated gene products.

To identify candidate drugs capable of killing CRC cells with mutated APC, investigators at the University of Texas Southwest Medical Center (Dallas, USA) screened more than 200,000 compounds against a panel of normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein.

They reported in the October 19, 2016, online edition of the journal Science Translational Medicine that a small molecule, TASIN-1 (truncated APC selective inhibitor-1), specifically killed cells with APC truncations but spared normal and cancer cells with wild-type APC. TASIN-1 exerted its cytotoxic effects through inhibition of cholesterol biosynthesis.

In vivo administration of TASIN-1 inhibited tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity.

"Even though such mutations are common in colorectal cancer, there are currently not any therapeutics that directly target these types of mutations, so this represents fresh avenues to approach," said senior author Dr. Jerry W. Shay, professor of cell biology at the University of Texas Southwest Medical Center. "Our latest finding confirms that targeting TASINs is a viable approach. Considering the high prevalence of APC mutations in colon cancer patients, targeting truncated APC could be an effective therapeutic strategy for prevention and intervention of colorectal cancer and could potentially be used as a marker for stratifying patients in future personalized medicine clinical trials."

Related Links:
University of Texas Southwest Medical Center

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Rapid Molecular Testing Device
FlashDetect Flash10

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more

Pathology

view channel
Image: The AI tool combines patient data and images to detect melanoma (Photo courtesy of Professor Gwangill Jeon/Incheon National University)

AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy

Melanoma continues to be one of the most difficult skin cancers to diagnose because it often resembles harmless moles or benign lesions. Traditional AI tools depend heavily on dermoscopic images alone,... Read more
GLOBE SCIENTIFIC, LLC