Inhibitors of a Mutant Kinase May Be Potential Treatment for Parkinson's Disease
|
By LabMedica International staff writers Posted on 01 Aug 2016 |

Image: Primary hippocampal neurons from mice expressing G2019S-LRRK2. The neurons were treated with alpha-synuclein fibrils, and 18 days later immunofluorescence was performed. The magenta shows phospho-alpha-synuclein inclusions in the cell bodies and throughout the axons, which are visualized as green (Photo courtesy of the University of Alabama).
A potential therapeutic approach for treatment of Parkinson's disease is based on drugs that block the activity of a mutated version of the enzyme LRRK2 (Leucine-rich repeat kinase 2).
The Gly2019S mutation is one of a small number of LRRK2 mutations proven to cause Parkinson's disease. Of these, Gly2019S is the most common in the Western World, accounting for about 2% of all Parkinson's disease cases in North American Caucasians. This mutation is enriched in certain populations, being found in approximately 20% of all Ashkenazi Jewish Parkinson's disease patients and in approximately 40% of all Parkinson's disease patients of North African Berber Arab ancestry.
Pathologic inclusions characterize the class of alpha-synucleinopathies that include Parkinson's disease. However, the interaction between alpha-synuclein, LRRK2, and the formation of alpha-synuclein inclusions remains unclear.
To study these molecular interactions, investigators at the University of Alabama (Birmingham, USA) applied very low concentrations of pre-formed fibrils of alpha-synuclein to in vitro or in vivo neurons. This caused formation of modified alpha-synuclein inclusions that shared morphology with those found in the brains of Parkinson's disease patients after death. The investigators used this model system to test the effects of neuron expression of the mutant G2019S form of the LRRK2 enzyme on the formation of the inclusion pathology.
They reported in the July 13, 2016, issue of the Journal of Neuroscience that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the substantia nigra pars compacta region of the rat brain, increased the recruitment of endogenous alpha-synuclein into inclusions in response to alpha-synuclein fibril exposure. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, blocked the increased alpha-synuclein aggregation in G2019S-LRRK2-expressing neurons.
The results obtained during this study demonstrated that alpha-synuclein inclusion formation in neurons could be blocked and that novel therapeutic compounds, which target this process by inhibiting LRRK2 kinase activity, may slow progression of Parkinson's disease-associated pathology.
"These data give us hope for the clinical potential of LRRK2 kinase inhibitors as effective therapies for Parkinson's disease," said first author Dr. Laura A. Volpicelli-Daley, assistant professor of neurology at the University of Alabama. "The LRRK2 kinase inhibitors may inhibit the spread of pathologic alpha-synuclein, not only in patients with LRRK2 mutations, but in all Parkinson's disease patients. Future studies to validate the safety and efficacy of the LRRK2 inhibitors will be necessary before testing the inhibitors in human clinical trials."
Related Links:
University of Alabama
The Gly2019S mutation is one of a small number of LRRK2 mutations proven to cause Parkinson's disease. Of these, Gly2019S is the most common in the Western World, accounting for about 2% of all Parkinson's disease cases in North American Caucasians. This mutation is enriched in certain populations, being found in approximately 20% of all Ashkenazi Jewish Parkinson's disease patients and in approximately 40% of all Parkinson's disease patients of North African Berber Arab ancestry.
Pathologic inclusions characterize the class of alpha-synucleinopathies that include Parkinson's disease. However, the interaction between alpha-synuclein, LRRK2, and the formation of alpha-synuclein inclusions remains unclear.
To study these molecular interactions, investigators at the University of Alabama (Birmingham, USA) applied very low concentrations of pre-formed fibrils of alpha-synuclein to in vitro or in vivo neurons. This caused formation of modified alpha-synuclein inclusions that shared morphology with those found in the brains of Parkinson's disease patients after death. The investigators used this model system to test the effects of neuron expression of the mutant G2019S form of the LRRK2 enzyme on the formation of the inclusion pathology.
They reported in the July 13, 2016, issue of the Journal of Neuroscience that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the substantia nigra pars compacta region of the rat brain, increased the recruitment of endogenous alpha-synuclein into inclusions in response to alpha-synuclein fibril exposure. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, blocked the increased alpha-synuclein aggregation in G2019S-LRRK2-expressing neurons.
The results obtained during this study demonstrated that alpha-synuclein inclusion formation in neurons could be blocked and that novel therapeutic compounds, which target this process by inhibiting LRRK2 kinase activity, may slow progression of Parkinson's disease-associated pathology.
"These data give us hope for the clinical potential of LRRK2 kinase inhibitors as effective therapies for Parkinson's disease," said first author Dr. Laura A. Volpicelli-Daley, assistant professor of neurology at the University of Alabama. "The LRRK2 kinase inhibitors may inhibit the spread of pathologic alpha-synuclein, not only in patients with LRRK2 mutations, but in all Parkinson's disease patients. Future studies to validate the safety and efficacy of the LRRK2 inhibitors will be necessary before testing the inhibitors in human clinical trials."
Related Links:
University of Alabama
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
Tracking gene-expression changes in the brain is crucial for understanding neurological diseases, yet current monitoring tools are invasive or unable to capture subtle activity shifts over time.... Read more
World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
Type 1 Diabetes (T1D) affects more than eight million people worldwide, with numbers expected to rise sharply. While most cases are genetically driven, only one in ten patients has a family history, making... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channelRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








