Inhibitors of a Mutant Kinase May Be Potential Treatment for Parkinson's Disease
|
By LabMedica International staff writers Posted on 01 Aug 2016 |

Image: Primary hippocampal neurons from mice expressing G2019S-LRRK2. The neurons were treated with alpha-synuclein fibrils, and 18 days later immunofluorescence was performed. The magenta shows phospho-alpha-synuclein inclusions in the cell bodies and throughout the axons, which are visualized as green (Photo courtesy of the University of Alabama).
A potential therapeutic approach for treatment of Parkinson's disease is based on drugs that block the activity of a mutated version of the enzyme LRRK2 (Leucine-rich repeat kinase 2).
The Gly2019S mutation is one of a small number of LRRK2 mutations proven to cause Parkinson's disease. Of these, Gly2019S is the most common in the Western World, accounting for about 2% of all Parkinson's disease cases in North American Caucasians. This mutation is enriched in certain populations, being found in approximately 20% of all Ashkenazi Jewish Parkinson's disease patients and in approximately 40% of all Parkinson's disease patients of North African Berber Arab ancestry.
Pathologic inclusions characterize the class of alpha-synucleinopathies that include Parkinson's disease. However, the interaction between alpha-synuclein, LRRK2, and the formation of alpha-synuclein inclusions remains unclear.
To study these molecular interactions, investigators at the University of Alabama (Birmingham, USA) applied very low concentrations of pre-formed fibrils of alpha-synuclein to in vitro or in vivo neurons. This caused formation of modified alpha-synuclein inclusions that shared morphology with those found in the brains of Parkinson's disease patients after death. The investigators used this model system to test the effects of neuron expression of the mutant G2019S form of the LRRK2 enzyme on the formation of the inclusion pathology.
They reported in the July 13, 2016, issue of the Journal of Neuroscience that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the substantia nigra pars compacta region of the rat brain, increased the recruitment of endogenous alpha-synuclein into inclusions in response to alpha-synuclein fibril exposure. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, blocked the increased alpha-synuclein aggregation in G2019S-LRRK2-expressing neurons.
The results obtained during this study demonstrated that alpha-synuclein inclusion formation in neurons could be blocked and that novel therapeutic compounds, which target this process by inhibiting LRRK2 kinase activity, may slow progression of Parkinson's disease-associated pathology.
"These data give us hope for the clinical potential of LRRK2 kinase inhibitors as effective therapies for Parkinson's disease," said first author Dr. Laura A. Volpicelli-Daley, assistant professor of neurology at the University of Alabama. "The LRRK2 kinase inhibitors may inhibit the spread of pathologic alpha-synuclein, not only in patients with LRRK2 mutations, but in all Parkinson's disease patients. Future studies to validate the safety and efficacy of the LRRK2 inhibitors will be necessary before testing the inhibitors in human clinical trials."
Related Links:
University of Alabama
The Gly2019S mutation is one of a small number of LRRK2 mutations proven to cause Parkinson's disease. Of these, Gly2019S is the most common in the Western World, accounting for about 2% of all Parkinson's disease cases in North American Caucasians. This mutation is enriched in certain populations, being found in approximately 20% of all Ashkenazi Jewish Parkinson's disease patients and in approximately 40% of all Parkinson's disease patients of North African Berber Arab ancestry.
Pathologic inclusions characterize the class of alpha-synucleinopathies that include Parkinson's disease. However, the interaction between alpha-synuclein, LRRK2, and the formation of alpha-synuclein inclusions remains unclear.
To study these molecular interactions, investigators at the University of Alabama (Birmingham, USA) applied very low concentrations of pre-formed fibrils of alpha-synuclein to in vitro or in vivo neurons. This caused formation of modified alpha-synuclein inclusions that shared morphology with those found in the brains of Parkinson's disease patients after death. The investigators used this model system to test the effects of neuron expression of the mutant G2019S form of the LRRK2 enzyme on the formation of the inclusion pathology.
They reported in the July 13, 2016, issue of the Journal of Neuroscience that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the substantia nigra pars compacta region of the rat brain, increased the recruitment of endogenous alpha-synuclein into inclusions in response to alpha-synuclein fibril exposure. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, blocked the increased alpha-synuclein aggregation in G2019S-LRRK2-expressing neurons.
The results obtained during this study demonstrated that alpha-synuclein inclusion formation in neurons could be blocked and that novel therapeutic compounds, which target this process by inhibiting LRRK2 kinase activity, may slow progression of Parkinson's disease-associated pathology.
"These data give us hope for the clinical potential of LRRK2 kinase inhibitors as effective therapies for Parkinson's disease," said first author Dr. Laura A. Volpicelli-Daley, assistant professor of neurology at the University of Alabama. "The LRRK2 kinase inhibitors may inhibit the spread of pathologic alpha-synuclein, not only in patients with LRRK2 mutations, but in all Parkinson's disease patients. Future studies to validate the safety and efficacy of the LRRK2 inhibitors will be necessary before testing the inhibitors in human clinical trials."
Related Links:
University of Alabama
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








