LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Coagulation Detector Helps Monitor Stroke Risk

By LabMedica International staff writers
Posted on 20 Jul 2016
Print article
Image: A diagram showing the assessment of embolic stroke risk by measuring blood coagulability (Photo courtesy of the Department of Biofunctional Informatics, TMDU).
Image: A diagram showing the assessment of embolic stroke risk by measuring blood coagulability (Photo courtesy of the Department of Biofunctional Informatics, TMDU).
An analyzer recently developed to measure blood coagulability has the sensitivity to detect hypercoagulability associated with stroke risk in those without atrial fibrillation. Atrial fibrillation (AF) causes an irregular and sometimes fast heart rate, and is a common risk factor for stroke.

A novel dielectric blood coagulometry (DBCM) has been invented for the evaluation of the coagulability and the DBCM measures the temporal change in the whole blood dielectric permittivity, which represents the aggregation of red blood cells. The CHADS2 score or CHA2DS2-Vasc predictive score are widely utilized for the risk stratification of strokes and used to guide anticoagulation therapy in patients with AF.

Scientists at the Tokyo Medical and Dental University (Tokyo, Japan) and their colleagues analyzed 133 blood samples that were drawn from subjects with or without heparin administration. A DBCM analysis was performed to find the adequate coagulation index, and to delineate its measurement range by adding recombinant human tissue factor (TF) or heparin. Then the coagulability was assessed by DBCM and conventional coagulation assays in 84 subjects without AF, who were divided into three groups by their CHADS2 score. Another 17 patients who received warfarin were also assessed by DBCM to evaluate the effect of anticoagulants.

DBCM was performed using a prototype dielectric coagulometer (Sony Corporation, Tokyo, Japan). The DBCM measured the dielectric permittivity in frequencies ranging from 100 Hz to 16 MHz, with sampling intervals of one minute. The measurement was completed 60 minutes after the recalcification. The dielectric permittivity was normalized compared to its initial value, and represented normalized permittivity. The result of the DBCM was analyzed by conducting a 5-point smoothing derivative of the dielectric permittivity at 10 MHz using the linear/quadratic Savitzky-Golay filter. Comparisons between untreated blood and that with added heparin (a blood thinner) or tissue factor (a blood-clotting accelerator) enabled derivation of a coagulability index.

The investigators found that found that patients receiving warfarin had a significantly longer end of acceleration time (EAT) than those without, confirming the anticoagulation effect. They also showed that patients with a high CHADS2 score had a significantly shorter EAT that represented hypercoagulability compared with patients with lower CHADS2 scores. The authors concluded that the DBCM, is a novel highly sensitive measurement method for whole blood coagulation, can identify small changes in the coagulation status. Patients with higher CHADS2 or CHA2DS2-Vasc scores exhibited hypercoagulability without AF. The study was published on June 8, 2016 in the journal Public Library of Sciences ONE.

Related Links:
Tokyo Medical and Dental University
Sony Corporation
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Auto Clinical Chemistry Analyzer
cobas c 703
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.