We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo
Medica 2025
Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Drug Development Based on Genome Editing Technology Receives Funding Boost

By LabMedica International staff writers
Posted on 05 Jul 2016
An American biopharmaceutical company dedicated to translating CRISPR/Cas9 gene-editing technology into transformative medicines announced the successful conclusion of Series B fund raising activities.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR-Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

The biopharmaceutical company CRISPR Therapeutics (Cambridge, MA, USA) announced the accumulation of an additional 38 million USD, which closed its latest round of Series B financing. This additional investment brought the total Series B financing to nearly 140 million USD.

The previous Series B investment was led by Vertex Pharmaceuticals and Bayer Global Investments, an affiliate of Bayer AG, as part of the company’s strategic investment in CRISPR Therapeutics. This second round included several new institutional investors and specialized healthcare funds including Franklin Templeton Investments, New Leaf Venture Partners, funds advised by Clough Capital Partners, and Wellington Capital Management.

“We are very pleased to add these top tier institutional investors in the most recent closing of our Series B financing,” said Dr. Rodger Novak, CEO of CRISPR Therapeutics. “Along with the recent investments made by our strategic partners, Vertex and Bayer, we believe this further investment represents a strong validation of our approach to translate the novel CRISPR/Cas9 gene-editing technology into life-changing medicines for patients. We plan to use these proceeds to advance our current and future programs to the clinic and to expand our research and development organization in Cambridge, Massachusetts.”

Related Links:
CRISPR Therapeutics

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
GLOBE SCIENTIFIC, LLC