New Blood Test Approach Helps Identify or Rule-Out Heart Attack
|
By LabMedica International staff writers Posted on 13 Jun 2016 |

Image: New research suggests using an hs-CTrop-I assay can speed up diagnosis of a heart attack (Photo courtesy of Medscape).
Two new studies have suggested that modified algorithms using the high-sensitivity cardiac troponin I (hs-CTrop-I) assay could help more quickly identify or exclude the diagnosis of a heart attack for patients reporting to an emergency department (ED) with suspected cardiac chest pain.
Current American Heart Association (AHA) guidelines recommend serial measurements of CT at presentation and 3-6 hours after symptom onset. As a result, most patients require prolonged assessment prior to safe discharge. This diagnostic approach leads to a large number of costly, potentially avoidable hospital admissions. Strategies that could safely identify a large proportion of patients suitable for discharge after a single sample of blood is taken on ED arrival would have major benefits to health care systems.
In one study, Edward Carlton, PhD, North Bristol National Health Service Trust (Bristol, England), and colleagues determined the diagnostic performance of low concentrations of hs-CTrop-I in patients with suspected cardiac chest pain and an electrocardiogram showing no ischemia as an indicator of acute myocardial infarction (AMI; heart attack). The researchers analyzed 5 international (Australia, New Zealand, and England) observational cohort studies with outcome assessment and 30-day follow-up. A total of 3,155 patients presenting with symptoms suggestive of cardiac ischemia were included in the analysis. Eligible patients had a nonischemic electrocardiogram determined and hs-CTrop-I measured at presentation. The lower limit of detection (1.2 ng/L) as well as rounded cutoff concentrations for a hs-CTrop-I assay were used in the analysis.
AMI developed in 291 individuals (9.2%). hs-CTrop-I concentrations that were below the limit of detection identified 19% of patients as being potentially suitable for immediate discharge, with a high diagnostic performance in excluding AMI.
“To place these results in the context of absolute numbers of presenting patients, a number-needed-to-diagnose approach shows that, for the 1.2 ng/L cutoff level, for every 10,630 patients assessed: 1,990 would be correctly reassured that they are not having an AMI, 10 would be falsely reassured, and 8,630 would undergo further investigation, of whom 990 would ultimately receive a diagnosis of AMI. We also demonstrate that cutoff values above the lower limit of detection may not have the required diagnostic performance for clinical implementation,” the authors wrote.
In the second study, Dirk Westermann, MD, University Hospital – Medical Center Hamburg-Eppendorf (Hamburg, Germany) and colleagues aimed to develop an algorithm for accurate and rapid exclusion and diagnosis of AMI after 1 hour. Current European Society of Cardiology guidelines recommend the use of hs-CTrop assays on admission and after 3 hours. Recent studies suggest that AMI can be diagnosed earlier than 3 hours, when values below the 99th percentile are used as cutoff values.
This study investigated the application of the CTrop-I assay for the diagnosis of AMI in 1,040 patients presenting to the emergency department with acute chest pain. Results were validated in 2 independent cohorts of 4,009 patients. The researchers found that with application of a new low hs-CTrop-I cutoff value of 6 ng/L, the rule-out algorithm showed a high negative predictive value of 99.8% after 1 hour for AMI, allowing for accurate and rapid exclusion of AMI. The l- and 3-hour approaches yielded results that were not statistically different. Similarly, a rule-in algorithm based on hs-CTrop-I levels provided a high positive predictive value with 83%. Application of the cutoff of 6 ng/L resulted in lower follow-up mortality (1%) compared with the routinely used 99th percentile (3.7%) for this assay.
“This cutoff [6 ng/L] enables a rapid triage that excludes AMI and a faster initiation of evidence-based treatment for patients diagnosed as having AMI,” the authors wrote.
The two studies, by Carlton E et al and by Neumann JT et al, were published online June 1, 2016, in the journal JAMA Cardiology.
Related Links:
North Bristol National Health Service Trust
University Hospital – Medical Center Hamburg-Eppendorf
Current American Heart Association (AHA) guidelines recommend serial measurements of CT at presentation and 3-6 hours after symptom onset. As a result, most patients require prolonged assessment prior to safe discharge. This diagnostic approach leads to a large number of costly, potentially avoidable hospital admissions. Strategies that could safely identify a large proportion of patients suitable for discharge after a single sample of blood is taken on ED arrival would have major benefits to health care systems.
In one study, Edward Carlton, PhD, North Bristol National Health Service Trust (Bristol, England), and colleagues determined the diagnostic performance of low concentrations of hs-CTrop-I in patients with suspected cardiac chest pain and an electrocardiogram showing no ischemia as an indicator of acute myocardial infarction (AMI; heart attack). The researchers analyzed 5 international (Australia, New Zealand, and England) observational cohort studies with outcome assessment and 30-day follow-up. A total of 3,155 patients presenting with symptoms suggestive of cardiac ischemia were included in the analysis. Eligible patients had a nonischemic electrocardiogram determined and hs-CTrop-I measured at presentation. The lower limit of detection (1.2 ng/L) as well as rounded cutoff concentrations for a hs-CTrop-I assay were used in the analysis.
AMI developed in 291 individuals (9.2%). hs-CTrop-I concentrations that were below the limit of detection identified 19% of patients as being potentially suitable for immediate discharge, with a high diagnostic performance in excluding AMI.
“To place these results in the context of absolute numbers of presenting patients, a number-needed-to-diagnose approach shows that, for the 1.2 ng/L cutoff level, for every 10,630 patients assessed: 1,990 would be correctly reassured that they are not having an AMI, 10 would be falsely reassured, and 8,630 would undergo further investigation, of whom 990 would ultimately receive a diagnosis of AMI. We also demonstrate that cutoff values above the lower limit of detection may not have the required diagnostic performance for clinical implementation,” the authors wrote.
In the second study, Dirk Westermann, MD, University Hospital – Medical Center Hamburg-Eppendorf (Hamburg, Germany) and colleagues aimed to develop an algorithm for accurate and rapid exclusion and diagnosis of AMI after 1 hour. Current European Society of Cardiology guidelines recommend the use of hs-CTrop assays on admission and after 3 hours. Recent studies suggest that AMI can be diagnosed earlier than 3 hours, when values below the 99th percentile are used as cutoff values.
This study investigated the application of the CTrop-I assay for the diagnosis of AMI in 1,040 patients presenting to the emergency department with acute chest pain. Results were validated in 2 independent cohorts of 4,009 patients. The researchers found that with application of a new low hs-CTrop-I cutoff value of 6 ng/L, the rule-out algorithm showed a high negative predictive value of 99.8% after 1 hour for AMI, allowing for accurate and rapid exclusion of AMI. The l- and 3-hour approaches yielded results that were not statistically different. Similarly, a rule-in algorithm based on hs-CTrop-I levels provided a high positive predictive value with 83%. Application of the cutoff of 6 ng/L resulted in lower follow-up mortality (1%) compared with the routinely used 99th percentile (3.7%) for this assay.
“This cutoff [6 ng/L] enables a rapid triage that excludes AMI and a faster initiation of evidence-based treatment for patients diagnosed as having AMI,” the authors wrote.
The two studies, by Carlton E et al and by Neumann JT et al, were published online June 1, 2016, in the journal JAMA Cardiology.
Related Links:
North Bristol National Health Service Trust
University Hospital – Medical Center Hamburg-Eppendorf
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







