We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microneedle Delivery of Beta-Cells Avoids Host Immune Rejection

By LabMedica International staff writers
Posted on 28 Mar 2016
Image: A scanning electron microscopic (SEM) image of the microneedle-array beta-cell patch (Photo courtesy of Dr. Zhen Gu, University of North Carolina).
Image: A scanning electron microscopic (SEM) image of the microneedle-array beta-cell patch (Photo courtesy of Dr. Zhen Gu, University of North Carolina).
A novel skin patch filled with living insulin-secreting beta cells was shown to regulate glucose levels in a mouse diabetes model for up to 10 hours while avoiding adverse immune responses.

Attempts to treat diabetes by transplanting beta-cells have not been particularly successful, since most transplants are rejected and the medications used to suppress the immune system interfere with the activity of beta cells and insulin.

Investigators at the University of North Carolina (Chapel Hill, USA) and North Carolina State University (Raleigh, USA) devised a way to protect foreign beta cells from attack by the immune system.

They described in the March 1, 2016, online edition of the journal Advanced Materials an innovative microneedle (MN)-based cell therapy device that enabled glucose-responsive regulation of the insulin secretion from exogenous pancreatic beta-cells without implantation.

The device was a synthetic patch comprising hundreds of biocompatible microneedles, each packed with thousands of alginate encapsulated beta-cells and culture media. When applied to the skin, the microneedles pierced capillaries and dermal blood vessels, forming a connection between the internal environment and the external cells of the patch that enabled diffusion of insulin from the patch into the skin.

Results revealed that one microneedle patch quickly reduced the blood-sugar levels (BGLs) of chemically induced type-1 diabetic mice and stabilized BGLs at a reduced level for over 10 hours. Repeated administration of the patch did not result in excess doses of insulin and did not induce hypoglycemia. Rather, application of a second patch extended the life of the treatment to 20 hours.

“This study provides a potential solution for the tough problem of rejection, which has long plagued studies on pancreatic cell transplants for diabetes,” said senior author Dr. Zhen Gu, assistant professor of biomedical engineering at the University of North Carolina. “Plus, it demonstrates that we can build a bridge between the physiological signals within the body and these therapeutic cells outside the body to keep glucose levels under control.”

Related Links:

University of North Carolina
North Carolina State University


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Pipette
Accumax Smart Series

Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more