LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fibrin Network Changes in Neonates After Cardiopulmonary Bypass

By LabMedica International staff writers
Posted on 22 Mar 2016
Print article
Image: Laser scanning confocal microscopy of clots constructed from adult fibrinogen (A), neonatal fibrinogen (B), or a mixture of the two (C). Scale bar= 20 μm (Photo courtesy of North Carolina State University).
Image: Laser scanning confocal microscopy of clots constructed from adult fibrinogen (A), neonatal fibrinogen (B), or a mixture of the two (C). Scale bar= 20 μm (Photo courtesy of North Carolina State University).
Image: A transfusion bag of cryoprecipitate which contains about 350 mg of fibrinogen (Photo courtesy of Perfusion).
Image: A transfusion bag of cryoprecipitate which contains about 350 mg of fibrinogen (Photo courtesy of Perfusion).
Quantitative and qualitative differences in the hemostatic systems exist between neonates and adults, including the presence of “fetal” fibrinogen, a qualitatively dysfunctional form of fibrinogen that exists until one year of age.

The consequences of “fetal” fibrinogen on clot structure in neonates, particularly in the context of surgery-associated bleeding, have not been well characterized. The sequential changes in clotting components and resultant clot structure in a small sample of neonates undergoing cardiac surgery and cardiopulmonary bypass (CPB) have been examined.

Scientists at North Carolina State University (Raleigh, NC, USA) and their colleagues collected blood samples were from 10 neonates before surgery, immediately after CPB, and after the transfusion of cryoprecipitate, which was the adult fibrinogen component. Clots were formed from patient samples or purified neonatal and adult fibrinogen. Clot structure was analyzed using confocal microscopy.

Clots formed from plasma obtained after CPB and after transfusion were more porous than baseline clots. Analysis of clots formed from purified neonatal and adult fibrinogen demonstrated that at equivalent fibrinogen concentrations, neonatal clots lack three-dimensional structure, whereas adult clots were denser with significant three-dimensional structure. Clots formed from a combination of purified neonatal and adult fibrinogen were less homogenous than those formed from either purified adult or neonatal fibrinogen. The study also showed that clots of neonate fibrinogen dissolve about twice as quickly as clots formed from adult fibrinogen. It also showed that clots formed from an adult and neonate fibrinogen mixture dissolved at approximately the same rate as adult-only clots—regardless of the percentage of neonate fibrinogen in the mixture.

The authors concluded that significant differences exist in clot structure between neonates and adults and that neonatal and adult fibrinogen may not integrate well. These findings suggest that differential treatment strategies for neonates should be pursued to reduce the demonstrated morbidity of blood product transfusion. Nina Guzzetta, MD, an assistant professor and corresponding author of the study said, “This suggests that using adult fibrinogen in neonatal patients may pose an increased risk of embolism or other adverse thrombotic events. This work drives home that newborns are not just small adults, and we still have much to learn about clotting in neonates. It also tells us that there is a great deal of room for improvement in the current standard of care for postoperative bleeding in neonates.” The study was published in the February 2016 issue of the journal Anesthesiology.

Related Links:

North Carolina State University


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.