We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Biomarker Identifies Uveal Melanoma Patients at Risk for Metastasis

By LabMedica International staff writers
Posted on 15 Mar 2016
Print article
Image: A cancer of the iris known as uveal melanoma (Photo courtesy of Dr. Jonathan Trobe, MD).
Image: A cancer of the iris known as uveal melanoma (Photo courtesy of Dr. Jonathan Trobe, MD).
Uveal melanoma is a cancer (melanoma) of the eye involving the iris, ciliary body, or choroid, collectively referred to as the uvea. Tumors arise from the pigment cells (melanocytes) that reside within the uvea giving color to the eye.

Uveal melanoma (UM) can be classified by gene expression profiling (GEP) into Class 1 (low metastatic risk) and Class 2 (high metastatic risk), the latter being strongly associated with mutational inactivation of the tumor suppressor gene BRCA1 Associated Protein-1 (Ubiquitin Carboxy-Terminal Hydrolase (BAP1).

Scientists at the University of Miami Miller School of Medicine (Miami, FL, USA) performed genome-wide analysis of messenger ribonucleic acid (mRNA) isolated from five class 1 uveal melanomas that metastasized and eight class 1 tumors that did not metastasize. A total of 389 consecutive patients with UM were assigned to Class 1 or Class 2 using a prospectively validated 12-gene prognostic classifier. Selected tumors were further analyzed using global GEP and single nucleotide polymorphism microarrays. PRAME (preferentially expressed antigen in melanoma) mRNA expression was analyzed in 64 Class 1 tumors by quantitative polymerase chain reaction (PCR).

Among 64 class 1 uveal melanoma samples analyzed by quantitative PCR, 39 (61%) had low levels of PRAME mRNA (PRAME negative) and 25 (39%) had high levels of PRAME mRNA (PRAME positive). None of the patients with PRAME-negative tumors developed metastasis while seven of the patients with PRAME-positive tumors did. The 5-year actuarial rate of metastasis was 0% for Class1PRAME−, 38% for Class1PRAME+, and 71% for Class 2 tumors. Median metastasis-free survival for Class1PRAME+ patients was 88 months, compared to 32 months for Class 2 patients.

J. William Harbour, MD, the senior author of the study said, “We were surprised to find that one biomarker alone PRAME was sufficient to identify the subgroup of class 1 tumors with increased metastatic risk. These findings could have immediate clinical impact. The data imply that patients with class 1 uveal melanomas with increased PRAME expression should be managed differently than patients with class 1 uveal melanomas without PRAME expression. They should be monitored more closely for metastatic disease and they should be considered for clinical trials of adjuvant therapy.” The study was published on March 1, 2016 in the journal Clinical Cancer Research.

Related Links:

University of Miami Miller School of Medicine


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Troponin I Test
Quidel Triage Troponin I Test
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.