Biosensor Test System Developed Using Magnetic Nanoparticles
|
By LabMedica International staff writers Posted on 14 Feb 2016 |

Image: Schematics of the magnetic particle quantification (MPQ) platform: the antigen is the test protein (e.g., PSA). MP is the magnetic nanoparticle; the upside down Y is the antibody to the test protein. The test antibodies (the blue Ys) capture the test protein, and the control antibodies (the yellow Ys) capture the antibodies with the nanoparticles (Photo courtesy of Moscow Institute of Physics and Technology).
A new biosensor test system based on magnetic nanoparticles has been developed and it is designed to provide highly accurate measurements of the concentration of protein molecules in various samples, including opaque solutions or strongly colored liquids.
The analysis is conducted using small test strips made of porous material with two test lines. A droplet of the sample liquid is applied to one end of the strip and after a short period the result is shown as the activation of one or both lines. The test can be done quickly and does not need to be carried out by specially trained staff; tests can easily be performed next to a patient or even in field conditions.
Scientists at Moscow Institute of Physics and Technology (Russia) have developed a dry-reagent immunomagnetic (DRIM) biosensing platform for rapid high-precision quantitative analyses for in vitro diagnostics. The platform combines the advantages of immunochromatography with highly sensitive quantification of 200-nm magnetic nanoparticles (MP) from the entire volume of lateral flow membranes. At molecular level, the magnetic nanoparticles "link" with antibodies to the required protein and then they are placed on a porous plate close to the intended point of contact with the test solution.
The new system was tested by measuring 25 pg/mL of prostate-specific antigen in the blood as the "healthy" range is anything lower than 4 ng/mL. Prostate-specific antigen is one of the most commonly monitored markers in clinical examinations on men. The scientists used their own patented method magnetic particle quantification (MPQ) to precisely count magnetic nanoparticles by their nonlinear magnetization. Using this method, scientists are able to record anything above 60 zmol (zeptomole; i.e., a factor of 10-21) of nanoparticles in a linear range exceeding ten million times in about 30 minutes. These parameters have never been recorded at this level before. The method involves applying an alternating magnetic field to the nanoparticles at two frequencies and monitoring the induction response at combinatorial frequencies.
The combination of reliability, accessibility, and high accuracy and sensitivity of the new method means that it is likely to make a rapid transition from a laboratory prototype to mass production. The developers have not yet given a specific timeframe, but they emphasize that their test system can be used not only to diagnose diseases, but also for a number of other applications. The study was published online on December 21, 2015, in the journal Biosensors and Bioelectronics.
Related Links:
Moscow Institute of Physics and Technology
The analysis is conducted using small test strips made of porous material with two test lines. A droplet of the sample liquid is applied to one end of the strip and after a short period the result is shown as the activation of one or both lines. The test can be done quickly and does not need to be carried out by specially trained staff; tests can easily be performed next to a patient or even in field conditions.
Scientists at Moscow Institute of Physics and Technology (Russia) have developed a dry-reagent immunomagnetic (DRIM) biosensing platform for rapid high-precision quantitative analyses for in vitro diagnostics. The platform combines the advantages of immunochromatography with highly sensitive quantification of 200-nm magnetic nanoparticles (MP) from the entire volume of lateral flow membranes. At molecular level, the magnetic nanoparticles "link" with antibodies to the required protein and then they are placed on a porous plate close to the intended point of contact with the test solution.
The new system was tested by measuring 25 pg/mL of prostate-specific antigen in the blood as the "healthy" range is anything lower than 4 ng/mL. Prostate-specific antigen is one of the most commonly monitored markers in clinical examinations on men. The scientists used their own patented method magnetic particle quantification (MPQ) to precisely count magnetic nanoparticles by their nonlinear magnetization. Using this method, scientists are able to record anything above 60 zmol (zeptomole; i.e., a factor of 10-21) of nanoparticles in a linear range exceeding ten million times in about 30 minutes. These parameters have never been recorded at this level before. The method involves applying an alternating magnetic field to the nanoparticles at two frequencies and monitoring the induction response at combinatorial frequencies.
The combination of reliability, accessibility, and high accuracy and sensitivity of the new method means that it is likely to make a rapid transition from a laboratory prototype to mass production. The developers have not yet given a specific timeframe, but they emphasize that their test system can be used not only to diagnose diseases, but also for a number of other applications. The study was published online on December 21, 2015, in the journal Biosensors and Bioelectronics.
Related Links:
Moscow Institute of Physics and Technology
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







