Global Regulator of Gene Transcription Identified as Potential Anticancer Drug Target
|
By LabMedica International staff writers Posted on 14 Feb 2016 |

Image: Human breast cancers (blue) grown on mice show marked reductions in inflammatory cytokines such as IL1a and IL6 (yellow) when MLL1 is inhibited (Photo courtesy of Dr. Brain Capell, University of Pennsylvania).
The enzyme MLL1 (histone-lysine N-methyltransferase 2A) was identified as a potential target for anticancer drugs after researchers found that its inhibition prevented tumor development by shutting down the DNA damage response mechanism and suppressed inflammation by blocking the activity of proliferation-promoting genes.
MLL is a histone methyltransferase deemed a positive global regulator of gene transcription. This protein belongs to the group of histone-modifying enzymes and is involved in the epigenetic maintenance of transcriptional memory. Previous observations linked this transcription-associated methyltransferase and oncoprotein to the DNA damage response (DDR), which led investigators at the University of Pennsylvania (Philadelphia, USA) to examine the role of MLL1 in cancer development and in the appearance of age-related inflammation.
They reported in the February 1, 2016, issue of the journal Genes & Development that MLL1 displayed direct epigenetic control over pro-proliferative cell cycle genes. Inhibition of MLL1 repressed expression of pro-proliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling age-related inflammation expression. However, these effects of MLL1 inhibition on age-related inflammation gene expression did not impair oncogene-induced senescence (OIS) and, abolished the ability of the age-related inflammation to enhance cancer cell proliferation. These results demonstrated that MLL1 inhibition may be a powerful and effective strategy for blocking cancerous growth through the direct epigenetic regulation of proliferation-promoting genes.
"Since tumor-promoting inflammation is one of the hallmarks of cancer, these findings suggest that MLL1 inhibitors may be highly potent anticancer drugs through both direct epigenetic effects on proliferation-promoting genes, as well as through the inhibition of inflammation in the tumor microenvironment," said first author Dr. Brian Capell, a medical fellow in epigenetics and dermatology at the University of Pennsylvania. "In cancer, this could be a potent one-two punch, by blocking both proliferation-promoting genes as well as the cancerous inflammation. One could imagine taking an MLL1 inhibitor as a primary treatment, but also as an adjuvant therapy to tamp down the rampant inflammation caused by drugs like chemotherapies."
Related Links:
University of Pennsylvania
MLL is a histone methyltransferase deemed a positive global regulator of gene transcription. This protein belongs to the group of histone-modifying enzymes and is involved in the epigenetic maintenance of transcriptional memory. Previous observations linked this transcription-associated methyltransferase and oncoprotein to the DNA damage response (DDR), which led investigators at the University of Pennsylvania (Philadelphia, USA) to examine the role of MLL1 in cancer development and in the appearance of age-related inflammation.
They reported in the February 1, 2016, issue of the journal Genes & Development that MLL1 displayed direct epigenetic control over pro-proliferative cell cycle genes. Inhibition of MLL1 repressed expression of pro-proliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling age-related inflammation expression. However, these effects of MLL1 inhibition on age-related inflammation gene expression did not impair oncogene-induced senescence (OIS) and, abolished the ability of the age-related inflammation to enhance cancer cell proliferation. These results demonstrated that MLL1 inhibition may be a powerful and effective strategy for blocking cancerous growth through the direct epigenetic regulation of proliferation-promoting genes.
"Since tumor-promoting inflammation is one of the hallmarks of cancer, these findings suggest that MLL1 inhibitors may be highly potent anticancer drugs through both direct epigenetic effects on proliferation-promoting genes, as well as through the inhibition of inflammation in the tumor microenvironment," said first author Dr. Brian Capell, a medical fellow in epigenetics and dermatology at the University of Pennsylvania. "In cancer, this could be a potent one-two punch, by blocking both proliferation-promoting genes as well as the cancerous inflammation. One could imagine taking an MLL1 inhibitor as a primary treatment, but also as an adjuvant therapy to tamp down the rampant inflammation caused by drugs like chemotherapies."
Related Links:
University of Pennsylvania
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Rapid Blood Testing Method Aids Safer Decision-Making in Drug-Related Emergencies
Acute recreational drug toxicity is a frequent reason for emergency department visits, yet clinicians rarely have access to confirmatory toxicology results in real time. Instead, treatment decisions are... Read more
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read moreMolecular Diagnostics
view channel
New CSF Liquid Biopsy Assay Reveals Genomic Insights for CNS Tumors
Central nervous system (CNS) malignancies pose distinctive diagnostic challenges because tissue-based testing is often infeasible and the blood–brain barrier limits the usefulness of plasma liquid biopsy.... Read more
Group A Strep Molecular Test Delivers Definitive Results at POC in 15 Minutes
Strep throat is a bacterial infection caused by Group A Streptococcus (GAS). It is a leading bacterial cause of acute pharyngitis, particularly in children and adolescents, and one of the most common reasons... Read more
Rapid Molecular Test Identifies Sepsis Patients Most Likely to Have Positive Blood Cultures
Sepsis is caused by a patient’s overwhelming immune response to an infection. If undetected or left untreated, sepsis leads to tissue damage, organ failure, permanent disability, and often death.... Read moreHematology
view channel
Rapid Cartridge-Based Test Aims to Expand Access to Hemoglobin Disorder Diagnosis
Sickle cell disease and beta thalassemia are hemoglobin disorders that often require referral to specialized laboratories for definitive diagnosis, delaying results for patients and clinicians.... Read more
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read moreImmunology
view channel
New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer
Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read moreBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Rapid Test Promises Faster Answers for Drug-Resistant Infections
Drug-resistant pathogens continue to pose a growing threat in healthcare facilities, where delayed detection can impede outbreak control and increase mortality. Candida auris is notoriously difficult to... Read more
CRISPR-Based Technology Neutralizes Antibiotic-Resistant Bacteria
Antibiotic resistance has accelerated into a global health crisis, with projections estimating more than 10 million deaths per year by 2050 as drug-resistant “superbugs” continue to spread.... Read more
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read morePathology
view channel
AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear
Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more
Research Consortium Harnesses AI and Spatial Biology to Advance Cancer Discovery
AI has the potential to transform cancer care, yet progress remains constrained by fragmented, inaccessible data that hinder advances in early diagnosis and precision therapy. Unlocking patterns missed... Read moreTechnology
view channel
AI-Powered Biomarker Predicts Liver Cancer Risk
Liver cancer, or hepatocellular carcinoma, causes more than 800,000 deaths worldwide each year and often goes undetected until late stages. Even after treatment, recurrence rates reach 70% to 80%, contributing... Read more
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreIndustry
view channel
QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio
QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more







