We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo WHX Labs Dubai 2026 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Global Regulator of Gene Transcription Identified as Potential Anticancer Drug Target

By LabMedica International staff writers
Posted on 14 Feb 2016
Image: Human breast cancers (blue) grown on mice show marked reductions in inflammatory cytokines such as IL1a and IL6 (yellow) when MLL1 is inhibited (Photo courtesy of Dr. Brain Capell, University of Pennsylvania).
Image: Human breast cancers (blue) grown on mice show marked reductions in inflammatory cytokines such as IL1a and IL6 (yellow) when MLL1 is inhibited (Photo courtesy of Dr. Brain Capell, University of Pennsylvania).
The enzyme MLL1 (histone-lysine N-methyltransferase 2A) was identified as a potential target for anticancer drugs after researchers found that its inhibition prevented tumor development by shutting down the DNA damage response mechanism and suppressed inflammation by blocking the activity of proliferation-promoting genes.

MLL is a histone methyltransferase deemed a positive global regulator of gene transcription. This protein belongs to the group of histone-modifying enzymes and is involved in the epigenetic maintenance of transcriptional memory. Previous observations linked this transcription-associated methyltransferase and oncoprotein to the DNA damage response (DDR), which led investigators at the University of Pennsylvania (Philadelphia, USA) to examine the role of MLL1 in cancer development and in the appearance of age-related inflammation.

They reported in the February 1, 2016, issue of the journal Genes & Development that MLL1 displayed direct epigenetic control over pro-proliferative cell cycle genes. Inhibition of MLL1 repressed expression of pro-proliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling age-related inflammation expression. However, these effects of MLL1 inhibition on age-related inflammation gene expression did not impair oncogene-induced senescence (OIS) and, abolished the ability of the age-related inflammation to enhance cancer cell proliferation. These results demonstrated that MLL1 inhibition may be a powerful and effective strategy for blocking cancerous growth through the direct epigenetic regulation of proliferation-promoting genes.

"Since tumor-promoting inflammation is one of the hallmarks of cancer, these findings suggest that MLL1 inhibitors may be highly potent anticancer drugs through both direct epigenetic effects on proliferation-promoting genes, as well as through the inhibition of inflammation in the tumor microenvironment," said first author Dr. Brian Capell, a medical fellow in epigenetics and dermatology at the University of Pennsylvania. "In cancer, this could be a potent one-two punch, by blocking both proliferation-promoting genes as well as the cancerous inflammation. One could imagine taking an MLL1 inhibitor as a primary treatment, but also as an adjuvant therapy to tamp down the rampant inflammation caused by drugs like chemotherapies."

Related Links:

University of Pennsylvania


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The assay evaluates tumor-derived total nucleic acid extracted from CSF and detects multiple biomarker classes (Photo courtesy of Shutterstock)

New CSF Liquid Biopsy Assay Reveals Genomic Insights for CNS Tumors

Central nervous system (CNS) malignancies pose distinctive diagnostic challenges because tissue-based testing is often infeasible and the blood–brain barrier limits the usefulness of plasma liquid biopsy.... Read more

Immunology

view channel
Image: The TmS computational biomarker analyzes tumor gene expression and microenvironment data to guide treatment decisions (Photo courtesy of MD Anderson Cancer Center)

New Biomarker Predicts Chemotherapy Response in Triple-Negative Breast Cancer

Triple-negative breast cancer is an aggressive form of breast cancer in which patients often show widely varying responses to chemotherapy. Predicting who will benefit from treatment remains challenging,... Read more

Pathology

view channel
Image: Sophie Paczesny, M.D., Ph.D and her team have made BIOPREVENT freely available for researchers and clinician to test and learn from (Photo courtesy of Cliff Rhodes)

AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear

Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more

Industry

view channel
Image: QuidelOrtho has entered into a strategic supply agreement with Lifotronic to expand its global immunoassay portfolio (Photo courtesy of QuidelOrtho)

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more